Answer:
CaCO₃(s) → CaO(s) + CO₂(g)
Explanation:
The decomposition reaction always make two compounds from one.
The products always have simpler chemical structure, originated from a determined compound. This can happens spontaneously or by a third party.
A notable example of decomposition is hydrolysis. As for example the case of water, which decomposes and generates oxygen and hydrogen gas
2H₂O (l) → 2 H₂ (g) + O₂ (g)
In this case, the calium carbonate decomposes into CaO and CO₂
These two, are the products of the decomposition.
Of course, the unique reactant is the Calcium Carbonate
The balanced equation is:
CaCO₃(s) → CaO(s) + CO₂(g)
Answer:
The chemical equation needs to be balanced so that it follows the law of conservation of mass. A balanced chemical equation occurs when the number of the different atoms of elements in the reactants side is equal to that of the products side.
<span>Photolysis and hydrolysis. These are two methods that can be used to break down a compound into simpler substances and smaller units.
Water which is used to break the bonds of molecules and split molecules is used from hydrolysis. Hydrolysis is made of three types which include;
1. salt hydrolysis.
2. acid hydrolysis.
3. Base hydrolysis.
Photolysis is well known to use energy from light to split the molecule and the same energy is referred to as photons which are used to break builds of molecules.</span>
<u>Answer:</u> The concentration of radon after the given time is 
<u>Explanation:</u>
All the radioactive reactions follows first order kinetics.
The equation used to calculate half life for first order kinetics:

We are given:

Putting values in above equation, we get:

Rate law expression for first order kinetics is given by the equation:
![k=\frac{2.303}{t}\log\frac{[A_o]}{[A]}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B2.303%7D%7Bt%7D%5Clog%5Cfrac%7B%5BA_o%5D%7D%7B%5BA%5D%7D)
where,
k = rate constant = 
t = time taken for decay process = 3.00 days
= initial amount of the reactant = 
[A] = amount left after decay process = ?
Putting values in above equation, we get:
![0.181days^{-1}=\frac{2.303}{3.00days}\log\frac{1.45\times 10^{-6}}{[A]}](https://tex.z-dn.net/?f=0.181days%5E%7B-1%7D%3D%5Cfrac%7B2.303%7D%7B3.00days%7D%5Clog%5Cfrac%7B1.45%5Ctimes%2010%5E%7B-6%7D%7D%7B%5BA%5D%7D)
![[A]=3.83\times 10^{-30}mol/L](https://tex.z-dn.net/?f=%5BA%5D%3D3.83%5Ctimes%2010%5E%7B-30%7Dmol%2FL)
Hence, the concentration of radon after the given time is 
Answer:
462g
Explanation:
First, let us calculate the molar mass of Cu(CN)2. This is illustrated below:
Molar Mass of Cu(CN)2 = 63.5 + 2(12+14) = 63.5 + 2(26) = 63.5 + 52 = 115.5g/mol
Number of mole of Cu(CN)2 given from the question = 4moles
Mass = number of mole x molar Mass
Mass of Cu(CN)2 = 4 x 115.5
Mass of Cu(CN)2 = 462g