1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
elena-s [515]
3 years ago
7

The electromagnetic spectrum is composed of many colors that possess different wavelengths. Which color possesses the shortest?

Physics
1 answer:
MrRa [10]3 years ago
8 0

Answer:

Violet

Explanation:

The visible spectrum of EM spectrum composed of mainly seven colors that possess different wavelengths. It is called visible spectrum because it is only part of EM spectrum that can be seen by the human eyes.

These colors from longest to shortest wave length can be written as red, orange, yellow, green, blue, indigo, and violet. Thus , we can say that violet color is color with least wavelength.

You might be interested in
Deadpool is doing a superhero landing from a 21 meter tall building what would his velocity be right before he hits the ground?
Morgarella [4.7K]

Answer:

I think he would be dead poggers

Explanation:

4 0
3 years ago
What's the definition energy?​
Anit [1.1K]
Energy is the quantitative property that must be transferred to an object in order to perform work on, or to heat, the object.
4 0
3 years ago
The Hoover dam is a hydroelectric power plant that converts the energy of falling water into electricity. Which of the following
vlabodo [156]

The correct answer to the question is : B) The weight of the water, and C) The height of the water.

EXPLANATION :

Before coming into any conclusion, first we have to understand potential energy of a body.

The potential energy of a body due to its position from ground is known as gravitational potential energy.

The gravitational potential energy is calculated as -

                      Potential energy P.E = mgh

 Here, m is the mass of the body, and g is the acceleration due to gravity.

h stands for the height of the body from the ground.

We know that weight of a body is equal to the product of mass with acceleration due to gravity.

Hence, weight W = mg

Hence, potential energy is written as P.E = weight × height.

Hence, potential energy depends on the weight and height of the water.


3 0
3 years ago
Read 2 more answers
The law of conservation of energy states:
Alborosie

Answer:

In physics and chemistry, the law of conservation of energy states that the total energy of an isolated system remains constant; it is said to be conserved over time. ... For instance, chemical energy is converted to kinetic energy when a stick of dynamite explodes.

6 0
3 years ago
You throw a ball from the balcony onto the court in the basketball arena. You release the ball at a height of 7.00 m above the c
Mariana [72]

Answer:

Your friend has to wait 0.26 s after you throw the ball to start running.

Explanation:

The equation that gives the position vector of the ball is as follows:

r = (x0 + v0 · t · cos α, y0 + v0 · t ·sin α + 1/2 · g · t²)

Where:

x0 = initial horizontal positon

v0 = initial velocity

t = time

α = throwing angle

y0 = initial vertical position

g = acceleration due to gravity

The equation of displacement of your friend is as follows:

x = x0 + v0 · t + 1/2 · a · t²

Where:

x = position of your friend at time t

x0 = initial position

v0 = initial velocity

t = time

a = acceleration

Please, see the attached figure for a description of the situation. Notice that the frame of reference is located at the throwing point.

Let´s find the time of flight of the ball. We know that at the final time, the y-component of the vector r has to be -6.00 m (1 m above the ground). Then:

y = y0 + v0 · t ·sin α + 1/2 · g · t²

-6.00 m = 0 m + 9.00 m/s · t · sin 33.0° - 1/2 · 9.8 m/s² · t²

0 = -4.9 m/s² · t² + 9.00 m/s · sin 33.0° · t + 6.00 m

Solving the quadratic equation:

t = 1.71 s

Now that we have the time of flight, we can calculate the x-component of the vector r (the horizontal distance traveled by the ball):

x= x0 + v0 · t · cos α

x = 0m + 9.00 m/s · 1.71 s · cos 33°

x = 12.9 m

Then, your friend will have to run (12.9 m - 11.0 m) 1.9 m to catch the ball 1 m above the ground.

Let´s see, how much time it takes your friend to run that distance:

x = x0 + v0 · t + 1/2 · a · t²      (x0 = 0, v0 = 0)

x = 1/2 · a · t²

1.9 m = 1/2 · 1.80 m/s² · t²

Solving for t

t = 1.45 s

Then, since the time of flight of the ball is 1.71 s, your friend has to wait

1.71 s - 1.45 s = 0.26 s after you throw the ball to start running.

6 0
3 years ago
Other questions:
  • A scuba diver sees light reflected from the water’s surface. show answer No Attempt If the index of refraction for air is 1.00 a
    5·1 answer
  • the scientists tested a hypothesis on running in the rain performed only one controlled experiment that supported their hypothes
    5·1 answer
  • Summarize Newton’s First Law
    8·1 answer
  • A light, inextensible cord passes over a light, frictionless pulley with a radius of 15 cm. It has a(n) 14 kg mass on the left a
    15·2 answers
  • The battleship and enemy ships 1 and 2 lie along a straight line. Neglect air friction. battleship 1 2 Consider the motion of th
    9·1 answer
  • What two factors determine the density of water in deep currents?
    9·1 answer
  • Which of the following could be used to create an open circuit?
    11·1 answer
  • Help with velocity math pls help asap
    13·1 answer
  • Which of these is a good way to begin your personal helath plan for physical fitness A. An assessment B. An action plan C. A pla
    13·1 answer
  • How does a second class lever make our work easier​
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!