when the ball hits the floor and bounces back the momentum of the ball changes.
the rate of change of momentum is the force exerted by the floor on it.
the equation for the force exerted is
f = rate of change of momentum

v is the final velocity which is - 3.85 m/s
u is initial velocity - 4.23 m/s
m = 0.622 kg
time is the impact time of the ball in contact with the floor - 0.0266 s
substituting the values

since the ball is going down, we take that as negative and ball going upwards as positive.
f = 189 N
the force exerted from the floor is 189 N
Answer:
A) Cold object will start getting hot
B) Heat exchange will stop as the two object acquire the same temperature.
Explanation:
A) When one hot object and one cold object are kept in contact then the heat is transferred from the hot object to the cold object via different modes of heat transmission. Hence, the cold object starts getting hot
B) The transmission of heat from the hot object to the cold object will stop as the temperature of the two object becomes equal to each other.
Answer:

Explanation:

Round to three significant digits

Answer: The original temperature was

Explanation:
Let's put the information in mathematical form:





If we consider the helium as an ideal gas, we can use the Ideal Gas Law:

were <em>R</em> is the gas constant. And <em>n</em> is the number of moles (which we don't know yet)
From this, taking
, we have:
⇒
Now:
⇒
<span>On what:
f (is the focal length of the lens) = ?
p (is the distance from the object to the lens) =15.8 cm
p' (is the distance from the image to the spherical lens) = 4.2 cm
</span><span>Using the Gaussian equation, to know where the object is situated (distance from the point).
</span>




Product of extremes equals product of means:


