The reaction is
<span>Zn (s) + 2 HCl (aq) ----> ZnCl2 (aq) + H2 (g)
which is already balanced
5.4 L of 2.8 M HCl contains
5.4 L (2.8 M) = 15.12 moles HCl
The amount of Zinc that will react completely with the acid is
15.12 mol HCl (1 mol Zn / 2 mol HCl) (65 g Zn/1 mol Zn) = 491.4 g Zn
</span>
Answer:
Ok:
Explanation:
So, you can use the Henderson-Hasselbalch equation for this:
pH = pKa + log(
) where A- is the conjugate base of the acid. In other words, A- is the deprotonated form and HA is the protonated.
We can solve that
1 = log(
) and so 10 =
or 10HA = A-. For every 1 protonated form of adenosine (HA), there are 10 A-. So, the percent in the protonated form will be 1(1+10) or 1/11 which is close to 9 percent.
Answer:
1. The greenhouse effect
2. sufficient pressure and temperature
Hope this helps!☻
The balanced chemical reaction is given as follows:
<span>2 KClO3(s) → 2 KCl(s) + 3 O2(g)
The starting amount of the reactant are given above. These values would be used for the calculations. We do as follows:
</span>2.72 g KClO3 (1 mol / 122.50g )( 3 mol O2 / 2 mol KClO3 ) ( 32 g O2 / 1 mol O2 ) = 1.06 g O2
<span>
0.361 g KClO3 </span>(1 mol / 122.50g )( 3 mol O2 / 2 mol KClO3 ) ( 32 g O2 / 1 mol O2 ) = 0.14 g O2
<span>
83.6 kg KClO3 (1000g / 1kg) </span>(1 mol / 122.50g )( 3 mol O2 / 2 mol KClO3 ) ( 32 g O2 / 1 mol O2 ) = 3275.76 g O2
<span>
22.5 mg KClO3</span> (1 g / 1000 mg) (1 mol / 122.50g )( 3 mol O2 / 2 mol KClO3 ) ( 32 g O2 / 1 mol O2 ) = 0.009 g O2