Answer:
pH = 12.33
Explanation:
Lets call HA = butanoic acid and A⁻ butanoic acid and its conjugate base butanoate respectively.
The titration reaction is
HA + KOH ---------------------------- A⁻ + H₂O + K⁺
number of moles of HA : 118.3 ml/1000ml/L x 0.3500 mol/L = 0.041 mol HA
number of moles of OH : 115.4 mL/1000ml/L x 0.400 mol/L = 0.046 mol A⁻
therefore the weak acid will be completely consumed and what we have is the unreacted strong base KOH which will drive the pH of the solution since the contribution of the conjugate base is negligible.
n unreacted KOH = 0.046 - 0.041 = 0.005 mol KOH
pOH = - log (KOH)
M KOH = 0.005 mol / (0.118.3 +0.1154)L = 0.0021 M
pOH = - log (0.0021) = 1.66
pH = 14 - 1.96 = 12.33
Note: It is a mistake to ask for the pH of the <u>acid solutio</u>n since as the above calculation shows we have a basic solution the moment all the acid has been consumed.
The reaction of baking soda or baking powder with the liquid in the batter: These ingredients react together and cause air bubbles to form. ... Heat of the oven: The heat of the oven can cause baking powder to react further and cause more air bubbles, and the heat also sets the structure of the cake.
Answer:
a. 4 sig figs
b. 3 sig figs
c. 2 sig figs
The coefficient for hydrogen in the balanced equation of solid molybdenum(iV) oxide with gaseous hydrogen is 2
Explanation
Coefficient is defined to as a number in front of a chemical formula in a balanced chemical equation.
The reaction of molybdenum (iv) oxide with gaseous hydrogen is as below,
MoO2 + 2 H2→ Mo +2 H2O
From balanced equation above the coefficient for H2 is 2 since the number in front of H2 is 2