Answer:
The answer to your question is Molarity = 0.41
Explanation:
Data
mass of KNO₃ = 76.6 g
volume = 1.84 l
density = 1.05 g/ml
Process
1.- Calculate the molecular mass of KNO₃
molecular mass = 39 + 14 + (16 x 3) = 101 g
2.- Calculate the number of moles
101 g of KNO₃ --------------- 1 mol
76.6 g of KNO₃ ------------ x
x = (76.6 x 1) / 101
x = 0.76 moles
3.- Calculate molarity
Molarity = 
Substitution
Molarity = 
Result
Molarity = 0.41
Answer:
236.9g
Explanation:
Given parameters:
Volume of gas = 81.3L
Pressure of gas = 204kPa
temperature of gas = 95°C
Unknown:
Mass of carbondioxide gas = ?
Solution:
To solve this problem, the ideal gas law will be well suited. The ideal gas law is a fusion of Boyle's law, Charles's law and Avogadro's law.
Mathematically, it is expressed as;
PV = nRT
the unknown here is n which is the number of moles;
P is the pressure, V is the volume, R is the gas constant and T is the temperature.
convert pressure into atm
101.325KPa = 1atm
204 kPa =
= 2atm
Convert temperature to Kelvin; 95 + 273 = 368K
2 x 81.3 = n x 0.082 x 368
n =
= 5.38moles
Since the unknown is mass;
Mass = number of moles x molar mass
Molar mass of carbon dioxide = 12 + 2(16) = 44g/mol
Mass = 5.38 x 44 = 236.9g
The pressure of a gas is the force that a gas exerts per unit area of the container.
Pressure is defined as force per unit area. Gas molecules are constantly colliding against the walls of the container. The pressure of the gas is the force the gas is exerting on its container.
Since temperature is defined as the average kinetic energy of the molecules of a gas then the higher the temperature, the faster the particles move.
The volume of a container refers the size if the container.
The pressure of a gas is inversely proportional to its volume according to Boyle's law. Thus implies that if the pressure of the gas goes up, the volume has to go down.
For a compound to be called an acid, it must contain H+ and H3O+ when dissolved in water.
For a compound to be called a base, the compound must dissolve in water to yield hydroxide ions.
Learn more: brainly.com/question/11543614
Answer : The equilibrium will shift in the left direction.
Explanation :
Le-Chatelier's principle : This principle states that if any change in the variables of the reaction, the equilibrium will shift in the direction to minimize the effect.
The given reaction is:

As per question, when we are adding
then the concentration of
is increased on product side then the equilibrium will shift in the direction where decrease of concentration of
takes place. Therefore, the equilibrium will shift in the left direction.
Thus, the equilibrium will shift in the left direction.