Answer:
(1) cathode: Y
(2) anode X
(3) electrons in the wire flow toward: Y
(4) electrons in the wire flow away from: X
(5) anions from the salt bridge flow toward X
(6) cations from the salt bridge flow toward Y
(7) gains mass: Y
(8) looses mass X
Explanation:
The voltaic cell uses two different metal electrodes, each in an electrolyte solution. The anode will undergo oxidation and the cathode will undergo reduction. The metal of the anode will oxidize, going from an oxidation state of 0 (in the solid form) to a positive oxidation state, and it will become an ion. At the cathode, the metal ion in the solution will accept one or more electrons from the cathode, and the ion’s oxidation state will reduce to 0. This forms a solid metal that deposits on the cathode. The two electrodes must be electrically connected to each other, allowing for a flow of electrons that leave the metal of the anode and flow through this connection to the ions at the surface of the cathode. This flow of electrons is an electrical current that can be used to do work, such as turn a motor or power a light.
The first word in the name of an ester is derived from the alcohol used in the esterification.
<h3>What is esterification?</h3>
Esterification is a chemical process where an organic acid with the formula is combined with an alcohol molecule having the chemical formula (ROH).
The process of esterification is known to produce an ester molecule and during this phenomenon is released water (H2O).
An example of an esterification reaction occurs when ethanoic acid (i.e., the active ingredient of vinegar) can react with C2H5OH (i.e., ethanol) in order to form the ethyl ethanoate molecule, which is a well-known ester molecule.
In conclusion, the first word in the name of an ester is derived from the Alcohol used in the esterification.
Learn more about esterification here:
brainly.com/question/14028062
#SPJ1