Explanation:
- vector r lies on z- axis
- J is tilted at angle Ψ
- Orient x-axis such that w lies in x-z plane
Given:
Vector potential

Where, K = б*v ; r* = sqrt (R^2 + r^2 -2R*r*cos(θ')) ; da' = R^2*sin(θ')*dθ'dΦ'
Solution:
- Velocity of v point a point r' in a rotating rigid body is given by:
v = w x r' =
- where a = Ψ and b' = θ' and c' = Φ'
v = R*w [-(cos Ψ *sin θ' *sin Φ') x + (cos Ψ *sin θ' *cos Φ' - sin Ψ * cos θ') y
+ (cos Ψ *sin θ' *sin Φ') z ]
- Notice that terms like sin Φ' and cos Φ' contribute to zero:

- Hence,

- Evaluate integral u = cos (b')
![= - \frac{1}{3R^2*r^2} * [ (R^2 + r^2 +rR)*(R - r) - (R^2 + r^2 -rR)*(R + r)]](https://tex.z-dn.net/?f=%3D%20-%20%5Cfrac%7B1%7D%7B3R%5E2%2Ar%5E2%7D%20%2A%20%5B%20%28R%5E2%20%2B%20r%5E2%20%2BrR%29%2A%28R%20-%20r%29%20-%20%20%28R%5E2%20%2B%20r%5E2%20-rR%29%2A%28R%20%2B%20r%29%5D)
- From we can determine two cases when r > R and r < R
Hence,
r < R 
r > R 
- Reverting back to original coordinate system given in figure 5.45:
r < R 
r > R 
Where, b = θ and c = direction along Φ.
Hence, A ( r , θ , Φ )