Answer: Because of the longitudinal motion of the air particles, there are regions in the air where the air particles are compressed together and other regions where the air particles are spread apart. These regions are known as compressions and rarefactions respectively
Explanation:
Answer:
The initial velocity of the ball is <u>39.2 m/s in the upward direction.</u>
Explanation:
Given:
Upward direction is positive. So, downward direction is negative.
Tota time the ball remains in air (t) = 8.0 s
Net displacement of the ball (S) = Final position - Initial position = 0 m
Acceleration of the ball is due to gravity. So,
(Acting down)
Now, let the initial velocity be 'u' m/s.
From Newton's equation of motion, we have:

Plug in the given values and solve for 'u'. This gives,

Therefore, the initial velocity of the ball is 39.2 m/s in the upward direction.
I would think something like fire or a torch because that seems like it means heat or maybe a campfire picture
Answer:
part of energy is wasted in heat because of resistance in the filament (and that's how it glows)
This question is incomplete.Here is complete one
Consider a telescope with a small circular aperture of diameter 2.0 centimeters.
If two point sources of light are being imaged by this telescope, what is the maximum wavelength (lambda) at which the two can be resolved if their angular separation is 3.0x10^-5 radians? Express your answer in nanometers
Answer:
λ =492nm
Explanation:
Given Data
diameter=2.0 cm
angular separation=3.0x10^-5 radians
λ=?
Solution
sin(theta) = 1.22 x λ /D
λ=(0.02×sin(3.0×10⁻⁵))/1.22
λ=492nm