Answer:
<u>C: Energy </u>
Explanation:
Waves can transfer energy over large distances.
Answer:
smaller acceleration, so lower change in velocity
Explanation:
To answer this question we examine the equation that relates mass with force and with acceleration:
.
Since we want to know what happens to the acceleration, we solve for it in the equation: 
Notice that we are asked what happens when the force applied is the same, but now it is applied in an object with more mass (M).
We therefore would have to compare our initial form:
with the new one:
wher the denominator is a larger quantity, therefore making our division/quotient smaller. Then, we conclude that the acceleration will be smaller, and therefore the change in velocity of the object will be lower.
Answer:
Option D. 4.4 m/s²
Explanation:
The following data were obtained from the question:
Velocity (v) = 21 m/s
Radius (r) = 100 m
Centripetal acceleration (a) =.?
The centripetal acceleration of the car can be obtained as follow:
Centripetal acceleration (a) = Velocity square (v²) / radius (r)
a = v²/r
a = 21²/100
a = 441/100
a = 4.41 ≈ 4.4 m/s²
Therefore, the centripetal acceleration of the car is 4.4 m/s².
It's easy to roll the the basket ball than bowling ball
It is because bowling ball is solid spherical ball which will have less moment of inertia
its moment of inertia is given as

While for the hollow ball like basketball we know that moment of inertia is given as

so here we can see for the same mass if we take basketball then its moment of inertia is more so it is easy to roll basket ball then to roll bowling ball.
So it is easy to roll basket ball then rolling ball
Link provided in other answer is a SCAM, don’t click on the link !!!!