Answer:
Required rate of return = 18.5 %
Explanation:
given,
rate of inflection = 4 %
risk free rate = 3 %
market risk premium = 5 %
firm has a beta = 2.30
rate of return has averaged 15.0% over the last 5 years
now,
Nominal risk free rate = risk free rate + inflation
= 3% + 4%
= 7%
Required rate of return = Nominal risk free rate + β (RPM)
= 7% + 2.3 x 5.0%
Required rate of return = 18.5 %
Answer: reliable
Explanation:
Reliable (marketing research) information is collected from questions (measurements) that are free from systematic or statistical error. An absence of systematic error implies that the respondents (i.e., the sampled people) who answer questions actually understand what the questions were asking.
Answer:
The magnitude of acceleration is reduced.
Explanation:
Force is defined as push or pull
The force is said to be<em> balance force </em>if the force are equal in size but opposite in direction. ie the object does not move or move with constant speed.
The force are to be<em> unbalanced force </em>if the force cause change in motion. ie the object has force greater than zero and has acceleration.
According to <em>Newton second law of motion </em>, acceleration depends on force acting on the object and mass of object.
F=ma
a=
When unbalanced force act on the mass of object it reduces magnitude of acceleration without changing the direction.
Does this help?
When an object is
immersed in a fluid (in this case water, but may include both liquids and
gases) the fluid exerts an upward force on the object which is called buoyancy
force or <span>up-thrust. Archimedes’ Principle states that the buoyant
force (upward push or force) applied to an object is equal to the weight of the fluid that the object takes the space of by
that object. Thus when an object is
placed in water the rise in the water level is dictated by the mass of that
object.</span>
<span>
</span>
<span>So for example if you fill a bucket with water and you drop a stone in that bucket, if you measure the weight of the water that overflows from the bucket due to the stone being dropped into the bucket is equivalent to the pushing force that the water has on the stone (as the stone drops to the bottom of the bucket the water is pushing it to stay afloat but the rock is more dense than water and as such its downthrust exceeds water's upthrust).</span>
Answer:
The latent heat of vaporization of water is 2.4 kJ/g
Explanation:
The given readings are;
The first (mass) balance reading (of the water) in grams, m₁ = 581 g
The second (mass) balance reading (of the water) in grams, m₂ = 526 g
The first joulemeter reading in kilojoules (kJ), Q₁ = 195 kJ
The second joulemeter reading in kilojoules (kJ), Q₂ = 327 kJ
The latent heat of vaporization = The heat required to evaporate a given mass water at constant temperature
Based on the measurements, we have;
The latent heat of vaporization = ΔQ/Δm
∴ The latent heat of vaporization of water = (327 kJ - 195 kJ)/(581 g - 526 g) = 2.4 kJ/g
The latent heat of vaporization of water = 2.4 kJ/g