At a distance r from a charge e on a particle of mass m the electric field value is 8.9876 × 10⁹ N·m²/C². Divide the magnitude of the charge by the square of the distance of the charge from the point. Multiply the value from step 1 with Coulomb's constant.
<h3>what is magnitude ?</h3>
Magnitude can be defined as the maximum extent of size and the direction of an object.
It is used as a common factor in vector and scalar quantities, as we know scalar quantities are those quantities that have magnitude only and vector quantities are those quantities have both magnitude and direction.
There are different ways where magnitude is used Magnitude of earthquake, charge on an electron, force, displacement, Magnitude of gravitational force
For more details regarding magnitude, visit
brainly.com/question/28242822
#SPJ1
Answer:
The answer is 24 (for the first question).
Explanation:
<h2><u><em>
PLEASE MARK AS BRAINLIEST!!!!!</em></u></h2>
9 because speed=distance/ time
Answer:
The force required to begin to lift the pole from the end 'A' is 240 N
Explanation:
The given parameters for the pole AB are;
The length of the pole, l = 10.0 m
The weight of the pole, W = 600 N ↓
The distance of the center of gravity of the pole from the side 'A' = 4.0 m
Let '
' represent the force required to begin to lift the pole from the end 'A' and let a force applied in the upwards direction be positive
For equilibrium, the sum of moment about the point 'B' = 0, therefore, taking moment about 'B', we have
× 10.0 m - W × 4.0 m = 0
∴
× 10.0 m = W × 4.0 m = 600 N × 4.0 m
× 10.0 m = 600 N × 4.0 m
∴
= 600 N × 4.0 m/(10.0 m) = 240 N
The force required to begin to lift the pole from the end 'A',
= 240 N.