angle AOB = 132 and is also the sum of angles AOD and
DOB. Hence
angle AOD + angle DOB = 132° ---> 1
angle COD = 141 and is also the sum of angles COB and BOD. Hence
angle COB + angle DOB = 141° ---> 2
Now we add the left sides together and the right sides of equations 1 and 2
together to form a new equation.
angle AOD + angle DOB + angle COB + angle DOB = 132 + 141 ---> 3
We should also note that:
angle AOD + angle DOB + angle COB = 180°
Therefore substituting angle AOD + angle DOB + angle COB in equation 3 by 180
and solving for angle DOB:
180 + angle DOB = 132 + 141
angle DOB = 273 - 180 = 93°
Answer:
\[y < = 300\]
Step-by-step explanation:
Let x = number of out-of-state students at the college
Let y = number of in-state students at the college
As per the given problem, the constraints are as follows:
\[x < = 100\] --------- (1)
\[y = 3 * x\] --------- (2)
From the given equations (2), \[ x = y/3 \]
Substituting in (1):
\[y/3 < = 100\]
Or, \[y < = 300\] which is the constraint representing the incoming students.
That’s 30 dollars she has
Putting all the names in a hat and selecting six students because the rest would not have been random because you know who you picked just by looking but if u put names in a hat you don't know who you picked.
It would be:
-.72 < -5/8 < -.6 < -7/12