Answer:
Knowing this, researchers from the University of Southern Denmark decided to investigate the size of these hypothetical hidden particles. According to the team, dark matter could weigh more than 10 billion billion (10^9) times more than a proton.
Explanation:
If this is true, a single dark matter particle could weigh about 1 microgram, which is about one-third the mass of a human cell (a typical human cell weighs about 3.5 micrograms), and right under the threshold for a particle to become a black hole.
The answer is in the attachment below:
Answer:
25.2 kJ
Explanation:
The complete question is presented in the attached image to this answer.
Note that, the heat gained by the 2.00 L of water to raise its temperature from the initial value to its final value comes entirely from the combustion of the benzoic acid since there are no heat losses to the containing vessel or to the environment.
So, to obtained the heat released from the combustion of benzoic acid, we just calculate the heat required to raise the temperature of the water.
Q = mCΔT
To calculate the mass of water,
Density = (mass)/(volume)
Mass = Density × volume
Density = 1 g/mL
Volume = 2.00 L = 2000 mL
Mass = 1 × 2000 = 2000 g
C = specific heat capacity of water = 4.2 J/g.°C
ΔT = (final temperature) - (Initial temperature)
From the graph,
Final temperature of water = 25°C
Initial temperature of water = 22°C
ΔT = 25 - 22 = 3°C
Q = (2000×4.2×3) = 25,200 J = 25.2 kJ
Hope this Helps!!!