Answer:

Explanation:
We are asked to find the specific heat capacity of a liquid. We are given the heat added, the mass, and the change in temperature, so we will use the following formula.

The heat added (q) is 47.1 Joules. The mass (m) of the liquid is 14.0 grams. The specific heat (c) is unknown. The change in temperature (ΔT) is 1.80 °C.
- q= 47.1 J
- m= 14.0 g
- ΔT= 1.80 °C
Substitute these values into the formula.

Multiply the 2 numbers in parentheses on the right side of the equation.


We are solving for the heat capacity of the liquid, so we must isolate the variable c. It is being multiplied by 25.2 grams * degrees Celsius. The inverse operation of multiplication is division, so we divide both sides of the equation by (25.2 g * °C).



The original measurements of heat, mass, and temperature all have 3 significant figures, so our answer must have the same. For the number we found that is the hundredth place. The 9 in the thousandth place to the right tells us to round the 6 up to a 7.

The heat capacity of the liquid is approximately 1.87 J/g°C.
Answer:
A hot spot is an area on Earth over a mantle plume or an area under the rocky outer layer of Earth, called the crust, where magma is hotter than surrounding magma. The magma plume causes melting and thinning of the rocky crust and widespread volcanic activity.
Hope this is what you mean be hot spot!
I hope this helps you!
Have a great day
The correct answer is approximately 11.73 grams of sulfuric acid.
The theoretical yield of water from Al(OH)3 is lower than that of H₂SO₄. As a consequence, Al(OH)3 is the limiting reactant, H₂SO₄ is in excess.
The balanced equation is:
2Al(OH)₃ + 3H₂SO₄ ⇒ Al₂(SO₄)₃ + 6H₂O
Each mole of Al(OH)3 corresponds to 3/2 moles of H₂SO₄. The molecular mass of Al(OH)3 is 78.003 g/mol. There are 15/78.003 = 0.19230 moles of Al(OH)3 in the five grams of Al(OH)3 available. Al(OH)3 is in limiting, which means that all 0.19230 moles will be consumed. Accordingly, 0.19230 × 3/2 = 0.28845 moles of H₂SO₄ will be consumed.
The molar mass of H₂SO₄ is 98.706 g/mol. The mass of 0.28845 moles of H₂SO₄ is 0.28845 × 98.706 = 28.289 g
40 grams of sulfuric acid is available, out of which 28.289 grams is consumed. The remaining 40-28.289 = 11.711 g is in excess, which is closest to the first option, that is, 11.73 grams of H₂SO₄.
"equal to"
1=1
1 is equal to 1
Is this what you mean?
Atomic mass W = 183.84 u.m.a
183.84 g ----------- 6.02x10²⁴ atoms
?? g ---------------- 2.1x10²⁴ atoms
2.1x10²⁴ x 183.84 / 6.02x10²⁴ =
3.860x10²⁶ / 6.02x10²⁴ = 641.30 g
hope this helps!