A non-reversible Acton. A chemical reaction in non-reversible
Answer:
The value is 
Explanation:
From the question we are told that
The frequency of each sound is
The speed of the sounds is 
The distance of the first source from the point considered is 
The distance of the second source from the point considered is 
Generally the phase angle made by the first sound wave at the considered point is mathematically represented as
![\phi_a = 2 \pi [\frac{a}{\lambda} + ft]](https://tex.z-dn.net/?f=%5Cphi_a%20%3D%20%202%20%5Cpi%20%5B%5Cfrac%7Ba%7D%7B%5Clambda%7D%20%20%2B%20ft%5D)
Generally the phase angle made by the first sound wave at the considered point is mathematically represented as
Here b is the distance o f the first wave from the considered point
Gnerally the phase diffencence is mathematically represented as
=> ![\Delta \phi = \frac{2\pi [ a - b]}{ \lambda }](https://tex.z-dn.net/?f=%5CDelta%20%20%5Cphi%20%20%20%3D%20%20%20%5Cfrac%7B2%5Cpi%20%5B%20a%20-%20b%5D%7D%7B%20%5Clambda%20%7D)
Gnerally the wavelength is mathematically represented as

=> 
=> 
=> ![\Delta \phi = \frac{2* 3.142 [ 4.40 - 4.0 ]}{ 0.611 }](https://tex.z-dn.net/?f=%5CDelta%20%20%5Cphi%20%20%20%3D%20%20%20%5Cfrac%7B2%2A%203.142%20%5B%204.40%20-%204.0%20%5D%7D%7B%20%200.611%20%20%7D)
=> 
At one later moment, its speed is 1. 20Mm/s (non relativistic because v is much less than the speed of light).
Answer:
0.05 m
Explanation:
From the question given above, the following data were obtained:
Mass of first object (M1) = 9900 kg
Gravitational force (F) = 12 N
Mass of second object (M2) = 52000 kg
Distance apart (r) =?
Gravitational constant (G) = 6.67×10¯¹¹ Nm²/Kg²
Thus, we can obtain the distance between the two objects as shown below:
F = GM1M2/r²
12 = 6.67×10¯¹¹ × 9900 × 52000 /r²
Cross multiply
12 × r² = 6.67×10¯¹¹ × 9900 × 52000
Divide both side by 12
r² = (6.67×10¯¹¹ × 9900 × 52000)/12
Take the square root of both side
r = √[(6.67×10¯¹¹ × 9900 × 52000)/12]
r = 0.05 m
Therefore, the distance between the two objects is 0.05 m
Answer:
c
Explanation:
though c is wider it has more water.