Answer:
The force of the ball on the bat is same as the force of the bat on the ball.
Explanation:
A bat hits the ball and the ball moves to the out filed.
According to the Newton's third law, for every action there is an equal and opposite reaction.
The action and the reaction forces acts on the two different bodies but the magnitude of the force is same.
As the ball is hitted by the bat, the bat exerts the force on the ball and the same force is exerted on the bat by the ball according to the Newton's third law.
So, the force of the ball on the bat is same as the force of the bat on the ball but the direction of force is opposite.
4 to 1
Explanation If you look at it as a fraction 160/40 and you reduce it down as far as you can you get 4/1
Answer:
A) was reusable
Explanation:
Check this website out for more information about the space shuttle: https://www.nasa.gov/audience/forstudents/k-4/stories/nasa-knows/what-is-the-space-shuttle-k4.html
Answer:
An <u>applied force</u> is a force that is applied to an object by a person or another object. If a person is pushing a desk across the room, then there is an applied force acting upon the object. The applied force is the force exerted on the desk by the person.
A <u>friction force</u> is the force exerted by a surface as an object moves across it or makes an effort to move across it. There are at least two types of friction force - sliding and static friction. Though it is not always the case, the friction force often opposes the motion of an object. For example, if a book slides across the surface of a desk, then the desk exerts a friction force in the opposite direction of its motion. Friction results from the two surfaces being pressed together closely, causing intermolecular attractive forces between molecules of different surfaces. As such, friction depends upon the nature of the two surfaces and upon the degree to which they are pressed together. The maximum amount of friction force that a surface can exert upon an object can be calculated using the formula below:
= µ •
Kinetic energy: the energy of motion
Work: the change in kinetic energy
Power: the rate of work done
Explanation:
The kinetic energy of an object is the energy possessed by the object due to its motion. Mathematically, it is given by:

where
m is the mass of the object
v is its speed
The work done an object is the amount of energy transferred; according to the energy-work theorem, it is equal to the change in kinetic energy of an object:

where
is the final kinetic energy
is the initial kinetic energy
Finally, the power is the rate of work done per unit time. Mathematically, ti can be expressed as

where
W is the work done
t is the time elapsed
Learn more about kinetic energy, work and power:
brainly.com/question/6536722
brainly.com/question/6763771
brainly.com/question/6443626
brainly.com/question/7956557
#LearnwithBrainly