Answer:
- <u>Yes,</u> <em>all titrations of a strong base with a strong acid have the same pH at the equivalence point.</em>
This <u>pH is 7.</u>
Explanation:
<em>Strong acids</em> and <em>strong bases</em> ionize completely in aqueous solutions. The ionization of strong acids produce hydronium ions, H₃O⁺, and the ionization of strong bases produce hydroxide ions, OH⁻.
Since the ionization of strong acids and bases progress until completion, there is not reverse reaction.
The definition of pH is pH = - log [H₃O⁺]. Acids have low pH (below 7, and greater than 0) and bases have high pH (above 7 and less than 14). Neutral solutions have pH = 7.
Acid-base titrations are a method to determine the concentration of an acid from the known concentration of a base, or the concentraion of a base from the known concentration of an acid.
The<em> equivalence point</em> of the titration is the point at which the the number of moles of hydronium ions and hydroxide ions are equal.
Then, at that point, the hydronium and hydroxide ions will be in the stoichiometric proportion to form a neutral solution, i.e. the pH of the solution wiill be 7.
Answer:
If 13.4 grams of nitrogen gas reacts we'll produce 16.3 grams of ammonia
Explanation:
Step 1: Data given
Mass of nitrogen gas (N2) = 13.4 grams
Molar mass of N2 = 28 g/mol
Molar mass of NH3 = 17.03 g/mol
Step 2: The balanced equation
N2 + 3H2 → 2NH3
Step 3: Calculate moles of N2
Moles N2 = Mass N2 / molar mass N2
Moles N2 = 13.4 grams / 28.00 g/mol
Moles N2 = 0.479 moles
Step 4: Calculate moles of NH3
For 1 mol N2 we need 3 moles H2 to produce 2 moles NH3
For 0.479 moles N2 we'll produce 2*0.479 = 0.958 moles
Step 5: Calculate mass of NH3
Mass of NH3 = moles NH3 * molar mass NH3
Mass NH3 = 0.958 moles * 17.03 g/mol
Mass NH3 = 16.3 grams
If 13.4 grams of nitrogen gas reacts we'll produce 16.3 grams of ammonia
The answer would be evaporation takes place at the surface of an ocean, lake, stream, or other body of water
Answer: that all thre water cycle and C is vaporation
Explanation:
Answer:
The concentration of protons affects an enzyme's folded structure and reactivity.
Explanation:
Enzymes act within narrow pH limits (optimal reaction pH). Since most enzymes have a protein structure, the variation in pH or temperature affects their enzymatic activity.
To catalyze a reaction, an enzyme binds to one or more reagent molecules. These molecules are the substrates of the enzyme.
In some reactions, a substrate breaks into several products. In others, two substrates join together to create a larger molecule or to exchange parts. In fact, for any biological reaction that can occur to you, there is probably an enzyme to accelerate it.
The part of the enzyme where the substrate binds is called the active site.
The amino acid residues of the active site often have acidic or basic properties that are important for catalysis. Changes in pH can affect these residues and make binding with the substrate difficult.