Oxygen is the only element in the list.
Answer:
The last answer would be correct because if you have ever done it before you would know that rubbing your feet (just like the rubbing of ice crystals) on the carpet will create the energy you need, then once you touch the metal it creates that spark!
Explanation:
hoped that helped-I would be thankful for brainliest ;)
Molecules made up of two or more elements are called compounds. Water, calcium oxide, and glucose are molecules that compound.
Answer:
1. See explanation below
2. Density
3. Masses
Explanation:
1. Your picture is a bit too small to see the values but maybe this will help you.
To determine the maximum maximum mass in grams that triple beam balance can measure all you have to do is add up the maximum of each beam. So all you need to do is see the value at the last notch of each beam.
However, if you are referring to the picture that is attached in the bottom: The answer would be 610g. Because the last notches of each beam are as follows:
100 g
500 g
10 g
So we add that we get 610g.
2. density can be computed using the formula:
D = M/V
where:
D = density
M = mass
V = volume
As you can see in the both figures A and B measure 20 g, this means that their masses are the same. The density of objects can be different when either their masses, or their volumes are different. So even if they have the same mass, they can have different densities because they have different volumes.
3. Force of gravitational attraction between two objects is dependent on the masses of the two objects and the distance. The larger the mass, the stronger the gravitational force of attraction. This means that they have a direct relationship. Now when it comes to distance, the further apart they are the weaker the gravitational force of attraction, or in other words, they are indirectly related.
The SI unit for the amount of substance present is the mole.
The mole is defined as the amount of substance that has the same amount of particles as there are atoms in 12 grams of carbon-12. Mathematically, the moles of a substance may be computed using:
moles present = mass of substance / molecular mass of substance