Answers:
1st: 189.6 g/mol
2nd: 0.1357 L
3rd: 1.41 M
Explanation:
Finding Molar Mass:
SnCl2 = <u>Tin(II) Chloride</u>
Tin has a molar mass of <u>118.71 g/mol</u>
Chloride has a molar mass of <u>35.453 g/mol</u>
Chloride*2 = <u>70.906</u>
<u>118.71 + 70.906 ≈ 189.6 g/mol</u>
Finding Liters of Solution:
L = mL/1000
135.7 mL / 1000 = <u>0.1357</u>
Finding Molarity:
molarity = <u>moles of solute / liters of solution</u>
M = (36.4g / 189.6g) / 0.1357 L = <u>1.41 M</u>
Hope this helped ;)
Number 2. Tectonophysicist
Answer:
2 Pb(OH)2 + 2H2SO4 => 2 PbSO4 + 4 H20
Explanation:
Since there's no "?" shown in the equation, let's balance it and solve it entirely.
Pb(OH)2 + 2H2SO4 => PbSO4 + 2H20
1Pb + 10O + 6H + 2S ≠ 1Pb + 6O + 4H + 1S → it needs to be balanced.
To do this, let's start by looking at the elements that are only presnet once on each side:
On the products half, S is only present in PbSO4 → if we look at the reagents half, we can see it needs a "2" → then Pb is multiplied by 2 too → so Pb(OH)2 on the reagents half will also need a "2" → final count on O and H on the reagents side: 12O and 8H → to balance it, you need 4 water molecules on the products side.