Answer:
b- The heat capacity ratio increases but output temperature don’t change
Explanation:
The heat capacity is the amount of energy required to raise the temperature of a body, by 1 degree. On the other hand, the specific heat capacity is the amount of heat required to raise the temperature of a of unit mass of a material by 1 degree.
Heat capacity is an extensive property meaning its value depends on the amount of material. Specific heat capacity is found by dividing heat capacity by the mass of the sample, thus making it independent of the amount (intensive property). So if the specific heat capacity increases and the mass of the sample remains the same, the heat capacity must increase too. Because of that options c and d that say that heat capacity reamins same are INCORRECT.
On the other hand, in which has to be with options a and b both say that the heat capacity increases which is correct, but about the output temperatures what happens is that if we increase the specific heat capacity of both fluids that are involved in a process of heat exchange in the same value, the value of the output temperatures do not change so only option a is CORRECT.
Answer:
Exergonic ,Endergonic,low concentration area,high
Explanation:
In exergonic reaction,certain molecules are broken down;in the process they release energy which is captured when high energy molecules(such as ATP and NADH) are formed.
The breakdown of these molecules can be coupled to thermodynamically unfavorable processes such as Endergonic reactions or pumping og hydrogen ion from low concentration areas to high concentration areas.
I’m not good at this but I’m guessing it’ll be the first one!
Answer:
The lithosphere is made up of pieces of tectonic plates. These plates are constantly changing and move towards the mantle. Non-stop movement of tectonic plates causes stress on the earth's outermost layer i.e,the crust. When these stresses extends it leads to cause cracks called faults.
Explanation:
You would think that the bag of nails would have more mass but their masses are identical. <span>If you were to put them both in a vacuum chamber and let them fall from a great height, they would fall the same speed. The vacuum chamber would suck all of the air out of the cotton balls, thus making it heavier and weigh the same as the bag of nails.
Hopefully this is helpful and makes sense.</span>