Answer:
the process by which plants make their food by there own with the help of sunlight and water is known as photosynthesis
A model of the atom as they didnt have microscopes back then they used models to describe
The correct answer is <span>D) centrifuge the mixture because the substance with the highter density will be pulled to the bottom
When things spin around, like a centrifuge, the centripetal force draws things towards the middle. If you make it a bit like a spiral and put it sideways, then the denser thing will go to the bottom while the less dense ones will remain on the outside. </span>
Answer:
E) Two of the above statements are true.
Explanation:
The options are:
A) Before the solution is titrated with HCl it is pink and when the color changes from pink to colorless, the moles of H*(aq) equals the moles of OH"(aq) used in the hydrolysis of the neutralized aspirin. <em>TRUE. </em>Before the solution is titrated, there is an excess of NaOH (Basic solution, phenolphtalein is pink). Then, at equivalence point, after the addition of HCl, the pH is acidic and phenolphtalein is colorless.
B) Before the solution is titrated with HCl it is colorless and when the color changes from colorless to pink, the moles of H*(aq) equals the excess moles of OH(aq) added. <em>FALSE. </em>As was explained, before the titration, the solution is pink.
C) 25.0 mL of 0.100 M NaOH was added to the sample to hydrolyze the neutralized aspirin in the solution. The titration with HCl allows us to determine the moles of excess OH(aq) added. Once we determine the moles of excess OH(aq), we can determine moles of OH"(aq) used in the hydrolysis of the neutralized aspirin, which is equal to the moles of aspirin in the recrystallized aspirin. <em>TRUE. </em>Aspirin requires an excess of base (NaOH) for a complete dissolution (Hydrolysis). Then, we add H+ as HCl to know the excess moles of OH-. As we know the added moles of OH-, we can find the moles of OH that reacted = Moles of aspirin.
D) We can determine the moles of aspirin in the recrystallized aspirin by titrating with the 0.100 M NaOH to the neutralization point. The purpose of the hydrolysis of the neutralized aspirin and the back-titration with the 0.100 M HCl is to confirm the moles of aspirin in the recrystallized aspirin. <em>FALSE. </em>NaOH can be added directly unyil neutralization point because, initially, aspirin can't be dissolved completely
E) Two of the above statements are true. <em>TRUE</em>
<em></em>
Right option is:
<h3>E) Two of the above statements are true.</h3>
Answer:
M = 0.441 M
Explanation:
In this case, we have two solutions that involves the Manganese II cation;
We have Mn(CH₃COOH)₂ and MnSO₄
In both cases, the moles of Mn are the same in reaction as we can see here:
Mn(CH₃COO)₂ <-------> Mn²⁺ + 2CH₃COO⁻
MnSO₄ <------> Mn²⁺ + SO₄²⁻
Therefore, all we have to do is calculate the moles of Mn in both solutions, do the sum and then, calculate the concentration with the new volume:
moles of MnAce = 0.489 * 0.0283 = 0.0138 moles
moles MnSulf = 0.339 * 0.0125 = 0.0042 moles
the total moles are:
moles of Mn²⁺ = 0.0138 + 0.0042 = 0.018 moles
Finally the concentration: 12.5 + 28.3 = 40.8 mL or 0.0408 L
M = 0.018 / 0.0408
M = 0.441 M
This would be the final concentration of the manganese after the mixing of the two solutions