Answer:
it's an indicator that a chemical reaction occurred.
Answer:
molecular weight (Mb) = 0.42 g/mol
Explanation:
mass sample (solute) (wb) = 58.125 g
mass sln = 750.0 g = mass solute + mass solvent
∴ solute (b) unknown nonelectrolyte compound
∴ solvent (a): water
⇒ mb = mol solute/Kg solvent (nb/wa)
boiling point:
- ΔT = K*mb = 100.220°C ≅ 373.22 K
∴ K water = 1.86 K.Kg/mol
⇒ Mb = ? (molecular weight) (wb/nb)
⇒ mb = ΔT / K
⇒ mb = (373.22 K) / (1.86 K.Kg/mol)
⇒ mb = 200.656 mol/Kg
∴ mass solvent = 750.0 g - 58.125 g = 691.875 g = 0.692 Kg
moles solute:
⇒ nb = (200.656 mol/Kg)*(0.692 Kg) = 138.83 mol solute
molecular weight:
⇒ Mb = (58.125 g)/(138.83 mol) = 0.42 g/mol
<u>Answer:</u> The percentage abundance of
and
isotopes are 75.77% and 24.23% respectively.
<u>Explanation:</u>
Average atomic mass of an element is defined as the sum of masses of each isotope each multiplied by their natural fractional abundance.
Formula used to calculate average atomic mass follows:
.....(1)
Let the fractional abundance of
isotope be 'x'. So, fractional abundance of
isotope will be '1 - x'
- <u>For
isotope:</u>
Mass of
isotope = 34.9689 amu
Fractional abundance of
isotope = x
- <u>For
isotope:</u>
Mass of
isotope = 36.9659 amu
Fractional abundance of
isotope = 1 - x
- Average atomic mass of chlorine = 35.4527 amu
Putting values in equation 1, we get:
![35.4527=[(34.9689\times x)+(36.9659\times (1-x))]\\\\x=0.7577](https://tex.z-dn.net/?f=35.4527%3D%5B%2834.9689%5Ctimes%20x%29%2B%2836.9659%5Ctimes%20%281-x%29%29%5D%5C%5C%5C%5Cx%3D0.7577)
Percentage abundance of
isotope = 
Percentage abundance of
isotope = 
Hence, the percentage abundance of
and
isotopes are 75.77% and 24.23% respectively.