Answer:
The acceleration that the jet liner that must have is 2.241 meters per square second.
Explanation:
Let suppose that the jet liner accelerates uniformly. From statement we know the initial (
) and final speeds (
), measured in meters per second, of the aircraft and likewise the runway length (
), measured in meters. The following kinematic equation is used to calculate the minimum acceleration needed (
), measured in meters per square second:

If we know that
,
and
, then the acceleration that the jet must have is:


The acceleration that the jet liner that must have is 2.241 meters per square second.
Answer:81.235N
Explanation:
Work=88J
theta=10°
distance=1.1 meters
work=force x cos(theta) x distance
88=force x cos10 x 1.1 cos10=0.9848
88=force x 0.9848 x 1.1
88=force x 1.08328
Divide both sides by 1.08328
88/1.08328=(force x 1.08328)/1.08328
81.235=force
Force=81.235
Seafloor spreading is a geologic process in which tectonic plates—large slabs of Earth's lithosphere—split apart from each other.
Answer:
v = 5.9 x 10⁷ m/s
Explanation:
The kinetic energy of the electron in terms of potential difference is given as:
--------------- equation (1)
where,
e = charge on electron = 1.6 x 10⁻¹⁹ C
V = Potential Difference = 9.9 KV = 9900 Volts
The kinetic energy in general is given as:
--------- equation (2)
where,
m = mass of electron = 9.1 x 10⁻³¹ kg
v = speed of electron = ?
Therefore, comparing equation (1) and equation (2), we get:

<u>v = 5.9 x 10⁷ m/s</u>