1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Paha777 [63]
3 years ago
7

Figure 8-56 shows a solid, uniform cylinder of mass 7.00 kg and radius 0.450 m with a light string wrapped around it. A 3.00-N t

ension force is applied to the string, causing the cylinder to roll without slipping across a level surface as shown. (a) What is the angular acceleration of the cylinder? (b) Calculate the magnitude and direction of the frictional force that acts on the cylinder. Figure attached below

Physics
1 answer:
AVprozaik [17]3 years ago
5 0

Answer:

a) The cylinder has an angular acceleration of 3.810 radians per square second, b) The frictional force has a magnitude of 9 newtons and has the same direction of tension force.

Explanation:

The external force exerted on string creates a tension force that tries to move the cylinder in translation, but it is opposed by the friction force between cylinder and ground that generates rolling on cylinder. The Free Body Motion on cylinder-string system is presented below as attachment. Given that cylinder is a rigid body in planar motion, two equations of equilibrium for translation and an equation of equilibrium for rotation are needed to represent the system, which are now described:

\Sigma F_{x} = T + f = M\cdot R\cdot \alpha

\Sigma F_{y} = N - M\cdot g = 0

\Sigma M_{G} = (T-f)\cdot R = I_{G}\cdot \alpha

Where:

T - Tension, measured in newtons.

f - Friction force, measured in newtons.

M - Mass of the cylinder, measured in kilograms.

R - Radius of the cylinder, measured in meters.

\alpha - Angular acceleration, measured in radians per square second.

N - Normal force from ground exerted on cylinder, measured in newtons.

g - Gravitational acceleration, measured in meters per square second.

I_{G} - Moment of inertia of the cylinder with respect to its center of mass, measured in kilogram-square meters.

The moment of inertia of the cylinder is:

I_{G} = \frac{1}{2}\cdot M\cdot R^{2}

a) The angular acceleration is determined by solving on first and third equation after eliminating  friction force:

f = M\cdot R \cdot \alpha - T

(T-M\cdot R\cdot \alpha+T) \cdot R = I_{G}\cdot \alpha

2\cdot T\cdot R = (I_{G} + M\cdot R^{2})\cdot \alpha

\alpha = \frac{2\cdot T\cdot R}{I_{G}+M\cdot R^{2}}

\alpha = \frac{2\cdot T \cdot R}{\frac{1}{2}\cdot M\cdot R^{2}+M\cdot R^{2} }

\alpha = \frac{4\cdot T}{3\cdot M\cdot R}

If T = 3\,N, M = 7\,kg and R = 0.45\,m, then:

\alpha = \frac{4\cdot (3\,N)}{(7\,kg)\cdot (0.45\,m)}

\alpha = 3.810\,\frac{rad}{s^{2}}

The cylinder has an angular acceleration of 3.810 radians per square second.

b) The magnitude of the frictional force can be determined with the help of the following expression:

f = M\cdot R \cdot \alpha - T

Given that T = 3\,N, M = 7\,kg, R = 0.45\,m and \alpha = 3.810\,\frac{rad}{s^{2}}, the magnitude of the friction force is:

f = (7\,kg)\cdot (0.45\,m)\cdot \left(3.810\,\frac{rad}{s^{2}} \right)-3\,N

f = 9\,N

The frictional force has a magnitude of 9 newtons and has the same direction of tension force.

You might be interested in
What magnification will be produced by a lens of power –4.00 D (such as might be used to correct myopia) if an object is held 43
kiruha [24]

Answer:

The magnification is m  = 0.3674

Explanation:

From the question we are told that

  The  power of the lens is  P = -4.00 D(dioptre)

Generally  1 dioptre = 1 \ meter

  The object distance is u =  -43 \ cm the negative sign is because the distance is measured in the opposite direction of incident light (i.e away )

 Generally the focal length is mathematically represented as

          f = \frac{1}{P}  

   =>f = \frac{1}{4.00 }  

  =>  f = 0.25 \ m

converting to  cm  

 =>   f = 0.25 \ m = 0.25 * 100 = 25 \ cm

Generally from lens equation  we have that  

     \frac{1}{f} +\frac{1}{v} -\frac{1}{u}

=>  \frac{1}{25} +\frac{1}{v} -\frac{1}{-43}

=>   v =  -15.8 \ cm

Generally the magnification is mathematically represented as

      m  = \frac{v}{u}

=>    m  = \frac{- 15.8}{-43}

=>    m  = 0.3674

6 0
2 years ago
Calculate the energy released by the electron-capture decay of 5727Co. Consider only the energy of the nuclei (ignore the energy
erma4kov [3.2K]

Answer:

Explanation:

⁵⁷Co₂₇  + e⁻¹  =  ²⁷Fe₂₆

mass defect = 56.936296 + .00055 - 56.935399

= .001447 u

equivalent energy

= 931.5 x .001447 MeV

= 1.3479 MeV .

= 1.35 MeV

energy of gamma ray photons = .14  + .017

= .157 MeV .

Rest of the energy goes to neutrino .

energy going to neutrino .

= 1.35 - .157

= 1.193 MeV.

5 0
2 years ago
Star a has a parallax angle of 0.02 arcseconds, and star b has a parallax of angle of 0.1 arcseconds. which star is more distant
Studentka2010 [4]
<span>Star a is more distant and is approximately 5 times as far away as star b Parallax is the change in angle that one must do in order to observe the same object from different locations. The further away an object is, the smaller the parallax is. As the angles approach zero, the trig functions tend to be fairly linear. And 0.1 arc seconds and 0.02 arc seconds are close enough to zero for this to hold true. Since the parallax for star a is smaller than the parallax for star b, it is the more distant star. And since 0.1 divided by 0.02 = 5, it is approximately 5 times further away than star b.</span>
3 0
3 years ago
What is the Creation Mandate?​
Ilia_Sergeevich [38]
Is the divine injunction found in Genesis 1:28, in which God, after having created the world and all in it, ascribes to humankind the tasks of filling, subduing, and ruling over the earth.
3 0
3 years ago
Positive ions have blank protons than electrons
grandymaker [24]
Postitive ions have more protons than electrons, because protons are positively charged. Electrons have a negative charge, so if there were less protons than electrons the job would be negative. If there were the same amount of both, then the positive and negative charges balance each other out, making a neutral charge.
5 0
3 years ago
Other questions:
  • Design a rectangular milk carton box of width ww, length ll, and height hh which holds 474 cm3474 cm3 of milk. The sides of the
    13·1 answer
  • What relationship was uncovered by Ørsted’s observation?
    7·2 answers
  • A dwarf planet discovered out beyond the orbit of Pluto is known to have an orbital period of 619.36 years. What is its average
    13·1 answer
  • Which is an advantage of AC over DC power?
    10·2 answers
  • A 730-keV gamma ray Compton-scatters from an electron. Find the energy of the photon scattered at 120°, the kinetic energy of th
    6·1 answer
  • What is the wave speed of a wave that has a frequency of 20 Hz and a wavelength of 30 m?
    13·1 answer
  • Which scientific discovery commonly attributed to Newton did Hooke also claim to have played a major role in?
    8·1 answer
  • What causes diffraction that results in a fuzzy glow around a full moon?
    15·2 answers
  • The Law of Conservation of Mass states that mass can be destroyed during a chemical change.
    7·1 answer
  • Abigail runs one complete lap (400m) around the track, while Gabi runs a 50 meter dash in a straight line. Which runner had a gr
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!