Kinetic energy = 1/2mv^2
=1/2(25)(1^2)
= 12.5J
The answer is:
C. 361 m/s
The explanation:
To calculate the speed of sound at a given temperature (50°C) we are going to use this formula:
v = 331 + 0.6T
when V is the velocity
and T is the temperature = 50°C
by substitution:
v = 331 + 0.6(50)
v = 361 m/s
So, The correct answer is C.
because of the variation of the motion of the molecules of air with change of temperature so, the velocity (V) of the sound in the air is change with temperature.
<span>Sea breeze can happen during hot summer days because of the
uneven heating rates of water and land.
The land surface heats up faster than the surface of the water during the
day. At this rate, the air above the
land grows warmer than the air atop the ocean. Warmer air is always lighter
than cooler air. As a consequence, warm air is pushed upward causing it to
rise. With this, warmer air rises over the land. As warm air rises over the
land, cooler air over the ocean flows over the land surface to change or
replace the rising warm air.</span>
First, convert all the km/hr into m/s
You will get that
initial speed = 20 m/s
Initial speed of Green train = 40 m/s
Initial separation = 950 m
Velocity of approach = 20 - -40 = 60 m/s
relative acceleration = -4 m/s^2
v = u + at
0 = 60 - 4t
t = 15s
s = ut + 1/2 *at * t
s = 60 * 15 - 1/2 *4 * 225
s = 900 - 450
Separation when they stop = 450 m
hope this helps
4.096. You just have to multiply 1.6 three times. V=s^3