1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sonja [21]
3 years ago
7

Which one of the following is an example of an indicator?

Physics
1 answer:
a_sh-v [17]3 years ago
7 0
B. litmus paper :) :)
You might be interested in
Is a process that modifies light waves so they vibrate in a single plane
madam [21]

The process you're fishing for is "polarization", but that's a

misleading description.

Polarization doesn't do anything to change the light waves. 

It simply filters out (absorbs, as with a polarizing filter) the

light waves that aren't vibrating in the desired plane, and

allows only those that are to pass.

The intensity of a light beam is always reduced after

polarizing it, because much (most) of the original light

has been removed.

A laser light source may be thought of as an exception,

since everything coming out of the laser is polarized.

8 0
4 years ago
A proton is projected toward a fixed nucleus of charge Ze with velocity vo. Initially the two particles are very far apart. When
11111nata11111 [884]

Answer:

The value is R_f =  \frac{4}{5}  R

Explanation:

From the question we are told that

   The  initial velocity of the  proton is v_o

    At a distance R from the nucleus the velocity is  v_1 =  \frac{1}{2}  v_o

    The  velocity considered is  v_2 =  \frac{1}{4}  v_o

Generally considering from initial position to a position of  distance R  from the nucleus

 Generally from the law of energy conservation we have that  

       \Delta  K  =  \Delta P

Here \Delta K is the change in kinetic energy from initial position to a  position of  distance R  from the nucleus , this is mathematically represented as

      \Delta K  =  K__{R}} -  K_i

=>    \Delta K  =  \frac{1}{2}  *  m  *  v_1^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K  =  \frac{1}{2}  *  m  * (\frac{1}{2} * v_o )^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K  =  \frac{1}{2}  *  m  * \frac{1}{4} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2

And  \Delta  P is the change in electric potential energy  from initial position to a  position of  distance R  from the nucleus , this is mathematically represented as

          \Delta P =  P_f - P_i

Here  P_i is zero because the electric potential energy at the initial stage is  zero  so

             \Delta P =  k  *  \frac{q_1 * q_2 }{R}  - 0

So

           \frac{1}{2}  *  m  * \frac{1}{4} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2 =   k  *  \frac{q_1 * q_2 }{R}  - 0

=>        \frac{1}{2}  *  m  *v_0^2 [ \frac{1}{4} -1 ]  =   k  *  \frac{q_1 * q_2 }{R}

=>        - \frac{3}{8}  *  m  *v_0^2  =   k  *  \frac{q_1 * q_2 }{R} ---(1 )

Generally considering from initial position to a position of  distance R_f  from the nucleus

Here R_f represented the distance of the proton from the nucleus where the velocity is  \frac{1}{4} v_o

     Generally from the law of energy conservation we have that  

       \Delta  K_f  =  \Delta P_f

Here \Delta K is the change in kinetic energy from initial position to a  position of  distance R  from the nucleus  , this is mathematically represented as

      \Delta K_f   =  K_f -  K_i

=>    \Delta K_f  =  \frac{1}{2}  *  m  *  v_2^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K_f  =  \frac{1}{2}  *  m  * (\frac{1}{4} * v_o )^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K_f  =  \frac{1}{2}  *  m  * \frac{1}{16} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2

And  \Delta  P is the change in electric potential energy  from initial position to a  position of  distance R_f  from the nucleus , this is mathematically represented as

          \Delta P_f  =  P_f - P_i

Here  P_i is zero because the electric potential energy at the initial stage is  zero  so

             \Delta P_f  =  k  *  \frac{q_1 * q_2 }{R_f }  - 0      

So

          \frac{1}{2}  *  m  * \frac{1}{8} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2 =   k  *  \frac{q_1 * q_2 }{R_f }

=>        \frac{1}{2}  *  m  *v_o^2 [-\frac{15}{16} ]  =   k  *  \frac{q_1 * q_2 }{R_f }

=>        - \frac{15}{32}  *  m  *v_o^2 =   k  *  \frac{q_1 * q_2 }{R_f } ---(2)

Divide equation 2  by equation 1

              \frac{- \frac{15}{32}  *  m  *v_o^2 }{- \frac{3}{8}  *  m  *v_0^2  } }   =  \frac{k  *  \frac{q_1 * q_2 }{R_f } }{k  *  \frac{q_1 * q_2 }{R } }}

=>           -\frac{15}{32 } *  -\frac{8}{3}   =  \frac{R}{R_f}

=>           \frac{5}{4}  =  \frac{R}{R_f}

=>             R_f =  \frac{4}{5}  R

   

7 0
3 years ago
One astronomer believes that the density of the universe remains constant. One physicist believes that the density of the univer
Alja [10]
The correct option is this: SCIENTISTS HAVING DIFFERENT INTERESTS ARRIVE AT DIFFERENT CONCLUSIONS.
There are many fields in science and the scientists working in these fields have varying interests. The interests that a scientist has in a certain research will determines his views and conclusions about such a research.<span />
4 0
3 years ago
Sayid made a chart listing data of two colliding objects. A 5-column table titled Collision: Two Objects Stick Together with 2 r
Alborosie

Answer:

6 m/s is the missing final velocity

Explanation:

From the data table we extract that there were two objects (X and Y) that underwent an inelastic collision, moving together after the collision as a new object with mass equal the addition of the two original masses, and a new velocity which is the unknown in the problem).

Object X had a mass of 300 kg, while object Y had a mass of 100 kg.

Object's X initial velocity was positive (let's imagine it on a horizontal axis pointing to the right) of 10 m/s. Object Y had a negative velocity (imagine it as pointing to the left on the horizontal axis) of -6 m/s.

We can solve for the unknown, using conservation of momentum in the collision: Initial total momentum = Final total momentum (where momentum is defined as the product of the mass of the object times its velocity.

In numbers, and calling P_{xi} the initial momentum of object X and P_{yi} the initial momentum of object Y, we can derive the total initial momentum of the system: P_{total}_i=P_{xi}+P_{yi}= 300*10 \frac{kg*m}{s} -100*6\frac{kg*m}{s} =\\=(3000-600 )\frac{kg*m}{s} =2400 \frac{kg*m}{s}

Since in the collision there is conservation of the total momentum, this initial quantity should equal the quantity for the final mometum of the stack together system (that has a total mass of 400 kg):

Final momentum of the system: M * v_f=400kg * v_f

We then set the equality of the momenta (total initial equals final) and proceed to solve the equation for the unknown(final velocity of the system):

2400 \frac{kg*m}{s} =400kg*v_f\\\frac{2400}{400} \frac{m}{s} =v_f\\v_f=6 \frac{m}{s}

7 0
4 years ago
Read 2 more answers
What are the two factors that determine a material's density?
Juliette [100K]
Mass and volume are the 2 factors to determine density
3 0
4 years ago
Other questions:
  • In two grams of element x combine with 4 grams of element y to form compound xy how many grams of element why would combined wit
    13·1 answer
  • Complete the paragraph to describe the relationship between kinetic energy and braking distance. Use . A car moves at a speed of
    10·2 answers
  • An architect finds some unlabeled dimensions on a blueprint, and no scale is shown. a 15-ft. wall that has already been built me
    8·2 answers
  • What formula relstes work n power
    11·1 answer
  • What is the maximum value of the electric field at a<br> distance2.5 m from a 100-W light bulb?
    10·1 answer
  • What is the wave speed of a wave that has a frequency of 20 Hz and a wavelength of 30 m?
    13·1 answer
  • A device that uses the wet/dry bulb method to measure the ___________________is the sling psychrometer. As seen here, two thermo
    5·1 answer
  • What information can scientists obtian from tree rings
    6·1 answer
  • Plants make ___________ using carbon dioxide, water and energy from the sun.
    6·1 answer
  • Which of the following is true about plants and cellular energy?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!