Answer:
Explanation:
Pressure due to fluid is directly proportional to the depth of fluid, density of the fluid and the value of acceleration due to gravity.
P = h d g
Where, h is the depth, d be the density and g be the acceleration due to gravity.
If we talk about teh atmospheric pressure, the density of air goes on decreasing as we go up and up. o we cannot say that it is directly depends only on the depth of air, it also depends on the changing density of air.
Answer:
Solid: metal alloy
Liquid: beer
Gas: Air
Explanation:
A solution is a type of mixture where the solvent and solute are homogeneously mixed. Homogeneous mixture means that the solute shouldn't be able to be seen with the naked eye, filtered and stable enough.
Metal alloy will be an example of a solution in solid-state. Beer is a solution made of liquid alcohol and liquid water. Air mostly composed of nitrogen, but it has oxygen, carbon dioxide, and many other substances in gaseous form.
To solve this problem it is necessary to apply the concepts related to intensity as a function of power and area.
Intensity is defined to be the power per unit area carried by a wave. Power is the rate at which energy is transferred by the wave. In equation form, intensity I is

The area of a sphere is given by

So replacing we have to

Since the question tells us to find the proportion when

So considering the two intensities we have to


The ratio between the two intensities would be

The power does not change therefore it remains constant, which allows summarizing the expression to

Re-arrange to find 



Therefore the intensity at five times this distance from the source is 
Answer:
The total energy of the composite system is 7.8 J.
Explanation:
Given that,
Height = 0.15 m
Radius of circular arc = 0.27 m
Suppose, the entire track is friction less. a bullet with a m₁ = 30 g mass is fired horizontally into a block of wood with m₂ = 5.29 kg mass. the acceleration of gravity is 9.8 m/s.
Calculate the total energy of the composite system at any time after the collision.
We need to calculate the total energy of the composite system
Total energy of the system at any time = Potential energy of the system at the stopping point


Put the value in to the formula


Hence, The total energy of the composite system is 7.8 J.
Work Done = Force x distance
Since she exerted a horizontal force of 20N over a distance of 5m, the work done is 20N x 5m which is equals to 100 joules