C is the answer !!!!!!!!!
The roots: this is when y=0, so in yours there are 2 roots. Just look at the x value when y=0 and that is your roots.
Y intercept- this is when x=0, so just look at the y value below x=0 and that is the y intercept. Note the answer will probably be in the form (0,_)
Vertex=do you see a pattern? Well the vertest would be the highest or lowest point of the quadratic equation. Your vertex would be (5,-9) because just look at x=4 and x=6, bit of the y values are -8 and when you look at x=3 and x=7 they are also the same because this is a quadratic equation.
Max or min: yours is a minimum because (5,-9) is the lowest point. Every value left and right of this are higher up the graph, so this would be a minimum.
*something that will help you see this all more clearly is if you graphed this or put it into Desmos to see the vertex etc.
Answer:
a) ![v = \frac{[L]}{[T]} = LT^{-1}](https://tex.z-dn.net/?f=%20v%20%3D%20%5Cfrac%7B%5BL%5D%7D%7B%5BT%5D%7D%20%3D%20LT%5E%7B-1%7D)
b) ![a = \frac{[L}{T}^{-1}]}{{T}}= L T^{-1} T^{-1}= L T^{-2}](https://tex.z-dn.net/?f=%20a%20%3D%20%5Cfrac%7B%5BL%7D%7BT%7D%5E%7B-1%7D%5D%7D%7B%7BT%7D%7D%3D%20L%20T%5E%7B-1%7D%20T%5E%7B-1%7D%3D%20L%20T%5E%7B-2%7D)
c) ![\int v dt = s(t) = [L]=L](https://tex.z-dn.net/?f=%20%5Cint%20v%20dt%20%3D%20s%28t%29%20%3D%20%5BL%5D%3DL)
d) ![\int a dt = v(t) = [L][T]^{-1}=LT^{-1}](https://tex.z-dn.net/?f=%20%5Cint%20a%20dt%20%3D%20v%28t%29%20%3D%20%5BL%5D%5BT%5D%5E%7B-1%7D%3DLT%5E%7B-1%7D)
e) ![\frac{da}{dt}= \frac{[L][T]^{-2}}{T} = [L][T]^{-2} [T]^{-1} = LT^{-3}](https://tex.z-dn.net/?f=%20%5Cfrac%7Bda%7D%7Bdt%7D%3D%20%5Cfrac%7B%5BL%5D%5BT%5D%5E%7B-2%7D%7D%7BT%7D%20%3D%20%5BL%5D%5BT%5D%5E%7B-2%7D%20%5BT%5D%5E%7B-1%7D%20%3D%20LT%5E%7B-3%7D)
Step-by-step explanation:
Let define some notation:
[L]= represent longitude , [T] =represent time
And we have defined:
s(t) a position function


Part a
If we do the dimensional analysis for v we got:
![v = \frac{[L]}{[T]} = LT^{-1}](https://tex.z-dn.net/?f=%20v%20%3D%20%5Cfrac%7B%5BL%5D%7D%7B%5BT%5D%7D%20%3D%20LT%5E%7B-1%7D)
Part b
For the acceleration we can use the result obtained from part a and we got:
![a = \frac{[L}{T}^{-1}]}{{T}}= L T^{-1} T^{-1}= L T^{-2}](https://tex.z-dn.net/?f=%20a%20%3D%20%5Cfrac%7B%5BL%7D%7BT%7D%5E%7B-1%7D%5D%7D%7B%7BT%7D%7D%3D%20L%20T%5E%7B-1%7D%20T%5E%7B-1%7D%3D%20L%20T%5E%7B-2%7D)
Part c
From definition if we do the integral of the velocity respect to t we got the position:

And the dimensional analysis for the position is:
![\int v dt = s(t) = [L]=L](https://tex.z-dn.net/?f=%20%5Cint%20v%20dt%20%3D%20s%28t%29%20%3D%20%5BL%5D%3DL)
Part d
The integral for the acceleration respect to the time is the velocity:

And the dimensional analysis for the position is:
![\int a dt = v(t) = [L][T]^{-1}=LT^{-1}](https://tex.z-dn.net/?f=%20%5Cint%20a%20dt%20%3D%20v%28t%29%20%3D%20%5BL%5D%5BT%5D%5E%7B-1%7D%3DLT%5E%7B-1%7D)
Part e
If we take the derivate respect to the acceleration and we want to find the dimensional analysis for this case we got:
![\frac{da}{dt}= \frac{[L][T]^{-2}}{T} = [L][T]^{-2} [T]^{-1} = LT^{-3}](https://tex.z-dn.net/?f=%20%5Cfrac%7Bda%7D%7Bdt%7D%3D%20%5Cfrac%7B%5BL%5D%5BT%5D%5E%7B-2%7D%7D%7BT%7D%20%3D%20%5BL%5D%5BT%5D%5E%7B-2%7D%20%5BT%5D%5E%7B-1%7D%20%3D%20LT%5E%7B-3%7D)
There are ⌊ 999 6 ⌋ − ⌊ 99 6 ⌋ numbers between 100 and 999 (i.e. three digit numbers) which are divisible by six.
Answer:
1. I dont know what format they want you to write it in but its 27/100 which is 0.27 as a decimal and 27% as a percent
2. it'll be 11/100 which is 0.11 as a decimal and 11% as a percent
Step-by-step explanation:
Since adding up all the people with cats, dogs or both is 73, and theres 100 people surveyed, that means 100-73=27 so 27 people dont have a cat or dog. Therefore its 27/100 which is 0.27 as a decimal and 27% as a percent
For number 2, because 11 people have both a dog and cat I believe itll be 11/100 which is 0.11 as a decimal and 11% as a percent