Answer:

Explanation:
For this problem, we can use Boyle's law, which states that for a gas at constant temperature, the product between pressure and volume remains constant:

which can also be rewritten as

In our case, we have:
is the initial pressure
is the initial volume
is the final pressure
Solving for V2, we find the final volume:

Answer:
H = start height (v = 0)
h = present height
v = present speed
assuming no friction
total energy = PE + KE
mgH = mgh + .5mv^2
if PE = KE then
mgH = mgh + mgh
h = H/2
potential energy = kinetic energy when object is at half its start height.
Explanation:
Answer:
The particles will more likely to move faster since they are converted from a liquid to gas.
Rules for States of Matter:
1. Solid particles always are packed close together and don't have much space to move.
2. Liquid particles have space to move around but are still packed together, but not as close as solid.
3. Gas particles are moving freely, in fact they are in the air! Gas particles are free to move wherever. For example, the air has gas particles that are constantly bumping into each other.
Let me know if I am right =)