Answer:
Force applied to stop the car = 1,250 N
Explanation:
Given:
Mass of car (M) = 1,000 kg
Initial velocity (U) = 20 m/s
Final velocity (V) = 0 m/s
Distance (S) = 160 m
Find:
Force applied to stop the car.
Computation:

Force applied to stop the car = 1,250 N
Yes it is possible. Momentum is calculated by the mass of the object times its velocity.
For example, say a bowling ball weighs 3.0kg and is travelling at a speed of 3.0m/s. Its momentum would be 3.0×3.0=9.0 kg·m/s.
Now say we have a baseball weighing 0.20kg and it is travelling at a speed of 47.0m/s. Its momentum would be 0.20×47.0=9.4 kg·m/s, which is more than that of the bowling ball.
Answer:
the wave represents the second harmonic.
Explanation:
Given;
length of the cord, L = 64 cm
The first harmonic of a cord fixed at both ends is given as;

The wavelength of a standing wave with two antinodes is calculated as follows;
L = N---> A -----> N + N ----> A -----> N
Where;
N is node
A is antinode
L = N---> A -----> N + N ----> A -----> N = λ/2 + λ/2
L = λ
The harmonic is calculated as;

Therefore, the wave represents the second harmonic.
L = λ
Answer:
correct
Explanation:
the atomic number is located top left of the atomic symbol given