1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Delicious77 [7]
3 years ago
11

An ideal Diesel cycle has a compression ratio of 18 and a cutoff ratio of 1.5. Determine the (1) maximum air temperature and (2)

the rate of heat addition to this cycle when it produces 150 hp of power, the cycle is repeated 1200 times per minute, and the state of the air at the beginning of the compression is 95 kPa and 17°C. Use constant specific heats at room temperature. The properties of air at room temperature are cp = 1.005 kJ/kg·K, cv = 0.718 kJ/kg·K, R = 0.287 kJ/kg·K, and k = 1.4.
Physics
1 answer:
weqwewe [10]3 years ago
7 0

Answer:

(1) The maximum air temperature is 1383.002 K

(2) The rate of heat addition is 215.5 kW

Explanation:

T₁ = 17 + 273.15 = 290.15

\frac{T_2}{T_1} =r_v^{k - 1} =18^{0.4} =3.17767

T₂ = 290.15 × 3.17767 = 922.00139

\frac{T_3}{T_2} =\frac{v_3}{v_2} = r_c = 1.5

Therefore,

T₃ = T₂×1.5 = 922.00139 × 1.5 = 1383.002 K

The maximum air temperature = T₃ = 1383.002 K

(2)

\frac{v_4}{v_3} =\frac{v_4}{v_2} \times \frac{v_2}{v_3}  = \frac{v_1}{v_2} \times \frac{v_2}{v_3} = 18 \times \frac{1}{1.5} = 12

\frac{T_3}{T_4} =(\frac{v_4}{v_3} )^{k-1} = 12^{0.4} = 2.702

Therefore;

T_4 = \frac{1383.002}{2.702} =511.859 \ k

Q_1 = c_p(T_3-T_2)

Q₁ = 1.005(1383.002 - 922.00139) = 463.306 kJ/jg

Heat rejected per kilogram is given by the following relation;

c_v(T_4-T_1)  = 0.718×(511.859 - 290.15) = 159.187 kJ/kg

The efficiency is given by the following relation;

\eta = 1-\frac{\beta ^{k}-1}{\left (\beta -1  \right )r_{v}^{k-1}}

Where:

β = Cut off ratio

Plugging in the values, we get;

\eta = 1-\frac{1.5 ^{1.4}-1}{\left (1.5 -1  \right )18^{1.4-1}}= 0.5191

Therefore;

\eta = \frac{\sum Q}{Q_1}

\therefore 0.5191 = \frac{150}{Q_1}

Heat supplied = \frac{150}{0.5191}  = 288.978 \ hp

Therefore, heat supplied = 215491.064 W

Heat supplied ≈ 215.5 kW

The rate of heat addition = 215.5 kW.

You might be interested in
What is a vernier caliper used for?​
iris [78.8K]

me ajudem por favor pra agora de noite

5 0
3 years ago
A fire hose held near the ground shoots water at a speed of 6.5 m/s. At what angle(s) should the nozzle point in order that the
valina [46]
The speed of water can be split into vertical and horizontal speed components:
v_x = 6.5 cos \theta \\ v_y = 6.5 sin \theta

Due to the force of gravity, the y component will be parabolic. The x component will be linear:
y(t) = -4.9t^2 + (6.5sin \theta) t \\  \\ x(t) = (6.5 cos \theta) t
To find when the water hits the ground 2.5m away, set y= 0 and x = 2.5
-4.9t^2 + (6.5sin \theta) t=0 \\  \\ t = \frac{6.5}{4.9} sin \theta \\ \\(6.5 cos \theta)(\frac{6.5}{4.9} sin \theta) = 2.5 \\  \\ sin \theta cos \theta = 0.29 \\  \\ sin 2\theta = 0.58 \\  \\ 2\theta = 35.4, 144.6 \\  \\ \theta = 17.7,72.3
8 0
3 years ago
A pin fin of uniform, cross-sectional area is fabricated of an aluminum alloy (k = 160 W/m-K). The fin diameter is D = 4 mm, and
frozen [14]

Answer:

Given that

D= 4 mm

K = 160 W/m-K

h=h = 220 W/m²-K

ηf = 0.65

We know that

m=\sqrt{\dfrac{hP}{KA}}

For circular fin

m=\sqrt{\dfrac{4h}{KD}}

m=\sqrt{\dfrac{4\times 220}{160\times 0.004}}

m = 37.08

\eta_f=\dfrac{tanhmL}{mL}

0.65=\dfrac{tanh37.08L}{37.08L}

By solving above equation we get

L= 36.18 mm

The effectiveness for circular fin given as

\varepsilon =\dfrac{2\ tanhmL}{\sqrt{\dfrac{hD}{K}}}

\varepsilon =\dfrac{2\ tanh(37.08\times 0.03618)}{\sqrt{\dfrac{220\times 0.004}{160}}}

ε = 23.52

5 0
3 years ago
Read 2 more answers
Please help me on this
QveST [7]

Answer:

i think its bulb 2

Explanation:

4 0
2 years ago
A tennis ball is shot vertically upward in an evacuated chamber inside a tower with an initial speed of 20.0 m/s at time t=0s. W
dalvyx [7]

Answer:

at the highest point of the path the acceleration of ball is same as acceleration due to gravity

Explanation:

At the highest point of the path of the ball the speed of the ball becomes zero as the acceleration due to gravity will decelerate the motion of ball due to which the speed of ball will keep on decreasing and finally it comes to rest

So here we will say that at the highest point of the path the speed of the ball comes to zero

now by the force diagram we can say that net force on the ball due to gravity is given by

F_g = mg

now the acceleration of ball is given as

a = \frac{F_g}{m}

a = \frac{mg}{m} = g

so at the highest point of the path the acceleration of ball is same as acceleration due to gravity

5 0
3 years ago
Other questions:
  • ALL OF MY POINTS FOR THIS!
    14·1 answer
  • Please please please please PLEASE help!!!
    14·1 answer
  • If two Force in opposite direction one is 120 N and the other is 5 N were applied on a box . The box equals 30kg. The magnitude
    8·1 answer
  • The calorie count of a serving of food can be computed based on its composition of​ carbohydrate, fat, and protein. The calorie
    14·1 answer
  • Why do we use the two-body problem to solve interplanetary trajectories, instead of including all of the appropriate gravitation
    15·1 answer
  • If a large unbalanced force is applied to a stationary low-mass object, what will happen to the object's motion?
    5·1 answer
  • In Speed Study Number 1, we looked at two cars traveling the same distance at different speeds on city streets. Car "A" traveled
    10·1 answer
  • When you look at yourself in the mirror, what is the approximate angle of incidence of the light rays?
    12·1 answer
  • ——-<br><br><br><br> need an answer asap!!
    14·2 answers
  • A race car traveling at 10 meters per second accelerates at 1.5 meters per second squared while moving a distance of 600 meters.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!