Answer:
The work done by the applied force is 259.22 J.
Explanation:
The work done by the applied force is given by:

Where:
F: is the applied horizontal force = 108.915 N
d: is the distance = 2.38 m
Hence, the work is:

Therefore, the work done by the applied force is 259.22 J.
I hope it helps you!
Answer:
Explanation:
Here's what we know because it was given to us:
a = -9.8 m/s/s and
time = 3.32 seconds
Here's what we know because we rock physics:
v₀ = 0 (because the object was held still before it was dropped).
Here's the equation that ties all that info together in a single one-dimensional equation:
v = v₀ + at
Filling in and solving for v:
v = 0 + (-9.8)(3.32) and
v = -33m/s
The velocity is negative because the object is moving downwards and up is positive (but you knew that already too!)
Is there a question? Because All your doing t explaining a british philosopher to us..
Complete part of Question: What is Jane's (and the vine's) angular speed just before she grabs Tarzan
Answer:
Jane's (and the vine's) angular speed just before she grabs Tarzan, w = 1.267 rad/s
Explanation:
According to the law of energy conservation:
Total change in kinetic energy = Total change in potential energy
Mass of Jane = 60 kg
Mass of the vine = 32 kg
Mass of Tarzan = 72 kg
Height of Tarzan = 5.50 m
Length of the vine = 8.50 m
Jane's change in gravitational potential energy,

Vine's gravitational potential energy,

Vine's Kinetic energy :

Jane's Kinetic energy:


3234 + 862.4 = 2167.5w² + 385.33w²
4096.4 = 2552.83w²
w² = 4096.4/2552.83
w² = 1.605
w = √1.605
w = 1.267 rad/s