the number of electrons that fill the outer shell determines the properties of elements
Yes. On a circular path, the direction of motion is constantly changing. Change of direction is acceleration, even at constant speed.
Answer:
The direction of the field is downward, and negatively charged particles will experience an upwards force due to the field.
F = N e E where E is the value of the field and N e the charge Q
M g = N e E and M g is the weight of the drop
N = M g / (e E)
N = 1.1E-4 * 9.8 / (1.6E-19 * 370) = 1.1 * 9.8 / (1.6 * 370) * E15 = 1.82E13
.00011 kg is a very large drop
Q = N e = M g / E = .00011 * 9.8 / 370 = 2.91E-6 Coulombs
Check: N = Q / e = 2.91E-6 / 1.6E-19 = 1.82E13 electrons
Explanation:
Consider the kinematic equation,

where x is the distance traveled, v is the initial velocity, a is the acceleration and t is time. By plugging in known values and solving for x,

through simple algebra we get

where this is the distance traveled in meters.
Answer:
F > W * sin(α)
Explanation:
The force needed for the box to start sliding up depends on the incline (α).
The external forces acting on the box would be the weight, the normal reaction and the lifting force that is applied to make it slide up.
These forces can be decomposed on their normal and tangential (to the slide plane) components.
The weight will be split into
Wn = W * cos(α) (in normal direction)
Wt = W * sin(α) (in tangential direction)
The normal reaction will be alligned with the normal axis, and will be equal to -Wn
N = -W* cos(α) (in normal direction)
To mke the box slide up, a force must be applied, that is opposite to the tangential component of the weight and at least a little larger
F > |-W * sin(α)| (in tangential direction)