If the object is moving in a straight line at a constant speed, then that's
the definition of zero acceleration. It can only happen when the sum of
all forces (the 'net' force) on the object is zero.
And it doesn't matter what the object's mass is. That argument is true
for specks of dust, battleships, rocks, stars, rock-stars, planets, and
everything in between.
Answer:
a) a = 3.72 m / s², b) a = -18.75 m / s²
Explanation:
a) Let's use kinematics to find the acceleration before the collision
v = v₀ + at
as part of rest the v₀ = 0
a = v / t
Let's reduce the magnitudes to the SI system
v = 115 km / h (1000 m / 1km) (1h / 3600s)
v = 31.94 m / s
v₂ = 60 km / h = 16.66 m / s
l
et's calculate
a = 31.94 / 8.58
a = 3.72 m / s²
b) For the operational average during the collision let's use the relationship between momentum and momentum
I = Δp
F Δt = m v_f - m v₀
F =
F = m [16.66 - 31.94] / 0.815
F = m (-18.75)
Having the force let's use Newton's second law
F = m a
-18.75 m = m a
a = -18.75 m / s²
Answer:

Explanation:
We are given that
Atomic number=2
We have to find the total negative charge on the electrons in one mole of Helium.
We know that atomic number=Proton number
Proton number=Number of electrons=2
Number of electrons in Helium=2
1 mole of Helium=
atoms
We know that q=ne
Where n =Number of fundamental units
e=Charge on electron
1 e=
Using the formula

Total negative charge in 1 mole=
Hence, the total negative charge on the electrons in 1 mole of Helium=
Ok so it usually includes the evaluation of symptom and disorder severity, patterns of symptoms over time number, frequency, and duration of episodes, and the patient's strengths and weaknesses.
Answer:
I believe the answer is C
Explanation:
because centripetal force is generally assosiated with rotation and how fast something spins