Small crystals
<span>white, brown </span>
<span>hard as in solid at room temp </span>
<span>sweet </span>
A penny for the scratch test (low hardness)a hand lens for inspection a peice of tile for a streak test a geologic hammer to test for cleavage of fracture and the pocket knife for the scratch test (high hardness)
Answer:
1.99 M
Explanation:
The molar mass of sodium thiosulfate (solute) is 158.11 g/mol. The moles corresponding to 110 grams are:
110 g × (1 mol/158.11 g) = 0.696 mol
The volume of solution is 350 mL = 0.350 L.
The molarity of sodium thiosulfate is:
M = moles of solute / liters of solution
M = 0.696 mol / 0.350 L
M = 1.99 M
When water is in liquid form its molecules are free to move around.
Water molecules are packed reasonably close together. However when water freezes its molecules take up a hexagonal lattice (repeating structure) which has space in the middle of it.
This is largely due to hydrogen bonding between water molecules (complicated).
As a result water molecules in ice aren't packed as closely together as they are in liquid water so the density of ice is lower than that of liquid water.
Hope that helps. I doubt you need to know about hydrogen bonding.