Answer:
Explanation:
We shall represent the velocity of cruise ship and coast guard petrol boat in vector form .
velocity of cruise ship
Vcs = - 2.5 j
Vpb = - 4.8 cos 19 i + 4.8 sin 19 j = - 4.54 i + 1.56 j
velocity of the cruise ship relative to the patrol boat
= Vcs - Vpb
= - 2.5 j - ( - 4.54 i + 1.56 j )
= - 2.5 j + 4.54 i - 1.56 j
= 2.04 i - 1.56 j .
x-component of the velocity of the cruise ship relative to the patrol boat
= 2.04 m /s
y-component of the velocity of the cruise ship relative to the patrol boat
= - 1.56 m /s .
Answer:
Speed of the wave is 7.87 m/s.
Explanation:
It is given that, tapping the surface of a pan
of water generates 17.5 waves per second
We know that the number of waves per
second is called the frequency of a wave.
So, f= 17.5 HZ
Wavelength of each wave,
A = 45 cm = 0.45 m
Speed of the wave is given by:
175 × 0.45
V= 7.87 m/s
So, the speed of the wave is 7.87 m/s
Hence, this is the required solution.
Answer:
electric motors is the answer
Answer:
Decreases by
times
Explanation:
The intensity of a sound is defined as the energy of the sound that is flowing in an unit time through the unit area which is in the direction that is perpendicular to the direction of the sound waves movement.
The intensity of energy is described by the inverse square law. It states that the intensity varies inversely with the distance square of the distance.
In other words, the sound intensity decreases as inversely proportional to the squared of the distance. i.e. 
In the context when the distance was 3 m, the intensity of the sound was = 
But when the distance became 6 cm or 0.06 m, the sound intensity decreases by = 
=
times
Answer:
Explanation:
Part A) Using
light intensity I= P/A
A= Area= π (Radius)^2= π((0.67*10^-6m)/(2))^2= 1.12*10^-13 m^2
Radius= Diameter/2
P= power= 10*10^-3=0.01 W
light intensity I= 0.01/(1.12*10^-13)= 9*10^10 W/m^2
Part B) Using
I=c*ε*E^2/2
rearrange to solve for E=
((I*2)/(c*ε))
c is the speed of light which is 3*10^8 m/s^2
ε=permittivity of free space or dielectric constant= 8.85* 10^-12 F⋅m−1
I= the already solved light intensity= 8.85*10^10 W/m^2
amplitude of the electric field E=
(9*10^10 W/m^2)*(2) / (3*10^8 m/s^2)*(8.85* 10^-12 F⋅m−1)
---> E=
(1.8*10^11) / (2.66*10^-3) =
(6.8*10^13) = 8.25*10^6 V/m