Answer:
They have the same amount of energy
Explanation:
Electrons are said to be the subatomic particles that move around the nucleus of an atom. These electrons are negatively charged particles that are seen to be quite smaller than the nucleus of an atom.
The electron shells of these atoms are usually being filled from the inside out with the low-energy shells closer to the nucleus being filled before they can go into the much higher-energy shells that are a bit out
Prior to determining the
experimental design, a scientist typically forms a hypothesis. The answer is
letter B. this is to prepare the scientist, the possible outcome of their
research before the experimental design whether they are wrong or not.
Answer:
(a) 17.37 rad/s^2
(b) 12479
Explanation:
t = 95 s, r = 6 cm = 0.06 m, v = 99 m/s, w0 = 0
w = v / r = 99 / 0.06 = 1650 rad/s
(a) Use first equation of motion for rotational motion
w = w0 + α t
1650 = 0 + α x 95
α = 17.37 rad/s^2
(b) Let θ be the angular displacement
Use third equation of motion for rotational motion
w^2 = w0^2 + 2 α θ
1650^2 = 0 + 2 x 17.37 x θ
θ = 78367.87 rad
number of revolutions, n = θ / 2 π
n = 78367.87 / ( 2 x 3.14)
n = 12478.9 ≈ 12479
Answer:
The ball has an acceleration of -380 m/s², this means the ball slows down
An acceleration of -380 m/s² is the equivalent of 38.736 g's
Explanation:
Step 1: Data given
Velocity of the baseball at time t=0 = 38 m/s
At time t, the ball stops. This means v = 0
time before stops = 0.1s
Step 2: Calculate the acceleration
v= v0+at
with v= the velocity of the ball at time t = 0. v= 0
with v0 = the velocity of the ball at time t=0. v0 = 38 m/s
with a= the acceleration in m/s²
with t = time in seconds
0 = 38 + a*0.1
a = -380 m/s²
The ball has an acceleration of -380 m/s², this means the ball slows down
An acceleration of -380 m/s² is the equivalent of 38.736 g's