Answer:
48%
Explanation:
Based on Gay-Lussac's law, the pressure is directly proportional to the temperature. To solve this question we must assume the temperature increases and all CO2 remains without reaction. The equation is:
P1T2 = P2T1
<em>Where Pis pressure and T absolute temperature of 1, initial state and 2, final state of the gas:</em>
P1 = 10.0atm
T2 = 1420K
P2 = ?
T1 = 730K
P2 = 10.0atm*1420K / 730K
P2 = 19.45 atm
The CO2 reacts as follows:
2CO2 → 2CO+ O2
Where 2 moles of gas react producing 3 moles of gas
Assuming the 100% of CO2 react, the pressure will be:
19.45atm * (3mol / 2mol) = 29.175atm
As the pressure rises just to 24.1atm the moles that react are:
24.1atm * (2mol / 19.45atm) = 2.48 moles of gas are present
The increase in moles is of 0.48 moles, a 100% express an increase of 1mol. The mole percent that descomposes is:
0.48mol / 1mol * 100 = 48%
Answer:
The chemical equilibrium of the system will be unaffected. The chemical equilibrium of the system will shift to the right to favor the forward reaction. The chemical equilibrium of the system will shift to the left to favor the reverse reaction. (I hope this helped!!)
Answer:
802.69 g
Explanation:
The molar mass of Barium nitrite is 229.34 g/mol, so 3.5 moles of it will have a mass of ...
3.5 mol × 229.34 g/mol = 802.69 g
A. conduction
that is the correct answer