A half life of 29 years means that after 29 years, only half of this isotope would be left due to radioactive decay. If we start of with 2000g of it and leave it for 116 years, it would undergo 4 "half=lives". 116/29 = 4. So after the first half life, we would have 2000g/2 = 1000g left. After the second, we would have 500g left, after the third, 250g so after 4 half lives or 116 years, there would be 125 g of Strontium-90 left at the site.
Las disoluciones son fundamentales para que se lleven a cabo las reacciones químicas que sustentan la vida. Esta es una mezcla de dos o más sustancias.
<h3>Disoluciones</h3>
Una disolución se refiere a una mezcla entre dos o más sustancias puras que da lugar a una mezcla homogénea de las mismas.
Una disolución está compuesta por al menos una sustancia conocida como disolvente (por ejemplo, agua) y al menos susutancia conocida como soluto (por ejemplo, sal).
Las disoluciones son fundamentales para una gran variedad de procesos biológicos requeridos para sustentar la vida y las reacciones metabólicas asociadas a estos procesos.
Aprende más sobre disoluciones aquí:
brainly.com/question/24003174
The acid dissociation constant is 1.3 × 10^-3.
<h3>What is acid-dissociation constant?</h3>
The acid-dissociation constant is a constant that shows the extent of dissociation of an acid in solution. We have to set up the reaction equation as shown below;
Let the acid be HA;
HA + H2O ⇄ H3O^+ + A^-
since the pH of the solution is 2.57 then;
[H3O^+] = Antilog(-pH) = Antilog(-2.57) = 2.7 × 10^-3
We can see that; [H3O^+] = [A^-] so;
Ka = (2.7 × 10^-3)^2/(5.5 × 10^–3)
Ka = 1.3 × 10^-3
Learn more about acid-dissociation constant: brainly.com/question/9728159
Answer:
H2(g)+I2(s)→2HI(s)
Explanation:
Hello there!
In this case, according to the given information and unbalanced chemical reaction, we infer it must be balanced in agreement with the law of conservation of mass because the reactants side has two hydrogen and iodine atoms whereas the products side has just one. In such a way, by placing a 2 on HI, we obtain the following balanced reaction:
H2(g)+I2(s)→2HI(s)
Regards!