Answer: 
Explanation:
Firstly we need to know that
, then we cam make the conversion:
This is the height of Mount Everest in feet
However, we can express it using scientific notation by counting to the left the decimal spaces:

Voltmeter is the device that is used to measure the potential difference across the battery.
<h2>What are the usage of voltmeter?</h2><h3 /><h3>Usage of Voltmeter</h3>
Voltmeter is an instrument that measures voltages of both direct and alternating electric current. On a scale of voltmeter usually graduated in volts, millivolts (0.001 volt), or kilovolts (1,000 volts).
Voltmeter is connected in parallel form. It has a high resistance so that it takes negligible current from the circuit so we can conclude that Voltmeter is the device that is used to measure the potential difference across the battery.
Answer:
(A) first order reaction
Explanation:
A first order reaction is a type of reaction in which the rate of the reaction depends only on the concentration on one of the reactants. Since A is the only reactant we have, it is right to deduce that this reaction is a first order reaction.
Note: while the order of this reaction is 1, its molecularity is 2. The molecularity of a reaction is the number of moles of reactants that is actually reacting.
(B) is wrong
This is because a zero order reaction is one in which the rate of reaction is not influenced by the concentrations of the reactants and hence remains constant irrespective. Since we were not furnished with this idea in the question, it is only right that we reject this answer.
(C) is wrong.
C is outrightly wrong as we have only one reactant.
(D) is wrong
We have only one reactant.
Hi , butter is a class of colloids called emulsions , so your answer is colloid.
Answer:
Ion-dipole forces
Explanation:
Na⁺ is a cation, that is, an ion with a positive charge.
NH₃ has polar covalent bonds (due to the difference in electronegativity between nitrogen and hydrogen). According to the VESPR theory, it has a trigonal pyramidal shape with a lone pair. As a consequence, it has a net dipole moment and the molecule is polar.
The intermolecular forces between Na⁺ (ion) and NH₃ (dipole) are ion-dipole forces.