Answer:
The heat needed to warm 25.3 g of copper from 22°C to 39°C is 165.59 Joules.
Explanation:

Where:
Q = heat absorbed or heat lost
c = specific heat of substance
m = Mass of the substance
ΔT = change in temperature of the substance
We have mass of copper = m = 25.3 g
Specific heat of copper = c = 0.385 J/g°C
ΔT = 39°C - 22°C = 17°C
Heat absorbed by the copper :

The heat needed to warm 25.3 g of copper from 22°C to 39°C is 165.59 Joules.
Answer:
How do Newton's laws of motion explain why it is important to keep the ice smooth on a hockey rink so that players can pass a puck as quickly as possible? Smooth ice reduces the unbalanced forces that would slow the hockey puck. A skydiver falls toward the ground at a constant velocity.
Explanation:
Answer:
4 - 1 - 3 - 2 - 6 - 5
Explanation:
During an engineering process, first, we need to identify the problem, or the need because the process only will occur because of some need. Then, it's necessary to know as much as possible about the problem and the things that already exist or already were tested to solve it. Knowing the background will make the work easy.
After that, it's necessary to plan the things we'll do, knowing the costs, the time needed for activities, how many people will be necessary for each step, etc. It's really important to make a plan. Then, do the work, following the plan. Thus, the process must be tested. During the test of the results, some problems must be found, so it's time to evaluate and redesign the process, to solve these problems found.
Answer:
d = 0.93 g/cm³
Explanation:
Given data:
Mass of object = 28 g
Volume of object = 3cm×2cm×5cm
density of object = ?
Solution:
Volume of object = 3cm × 2cm ×5cm
Volume of object = 30 cm³
Density of object:
d = m/v
by putting values,
d = 28 g/ 30 cm³
d = 0.93 g/cm³