Answer:
The molar mass in g/mol is 121.4 g/m
Explanation:
Let's apply the Ideal Gases Law to solve this:
P . V = n . R. T
V = 125 mL → 0.125L
P = 754 Torr
760 Torr ___ 1 atm
754 Torr ____ (754 / 760) = 0.992 atm
Moles = Mass / Molar mass
0.992 atm . 0.125L = (0.495 g / MM) . 0.082 . 371K
(0.992 atm . 0.125L) / (0.082 . 371K) = (0.495 g / MM)
4.07x10⁻³ mol = 0.495 g / MM
MM = 0.495 g / 4.07x10⁻³ mol → 121.4 g/m
Answer
- A
- D
- D
- A
- B
- A
This is what I got, but i'm mot sure if I'm right
Answer:
You must divide the grams of your actual yield by the grams of the theoretical yield and multiply by 100 in order to obtain percent yield
Explanation:
Answer:-
Oxygen gains electrons and is reduced.
Explanation:-
For this reaction the balanced chemical equation is
4Fe + 3O2 --> 2Fe2O3
When Oxygen is present as oxygen gas, the oxidation number of O is Zero since it is the only element present in Oxygen gas.
Similarly Iron is present in Fe with oxidation number Zero.
In the case of Fe2O3, Oxygen has the oxidation number -2 while Iron has +3.
So the oxidation number of Oxygen goes from Zero to -2.
Since the oxidation number decreases Oxygen is reduced.
Since reduction involves gain of electrons, Oxygen gains electrons.