Answer:
Initial velocity, U = 28.73m/s
Explanation:
Given the following data;
Final velocity, V = 35m/s
Acceleration, a = 5m/s²
Distance, S = 40m
To find the initial velocity (U), we would use the third equation of motion.
V² = U² + 2aS
Where;
V represents the final velocity measured in meter per seconds.
U represents the initial velocity measured in meter per seconds.
a represents acceleration measured in meters per seconds square.
S represents the displacement measured in meters.
Substituting into the equation, we have;
35² = U + 2*5*40
1225 = U² + 400
U² = 1225 - 400
U² = 825
Taking the square root of both sides, we have;
Initial velocity, U = 28.73m/s
Answer:
A. 91 meters north
Explanation:
Take +y to be north.
Given:
v₀ = 13 m/s
a = 0 m/s²
t = 7 s
Find: Δy
Δy = v₀ t + ½ at²
Δy = (13 m/s) (7 s) + ½ (0 m/s²) (7 s)²
Δy = 91 m
The displacement is 91 m north.
Kinetic energy and potential energy pair is the quantity in which one will increase then other will decrease
As we know that sum of kinetic energy and potential energy will always remain conserved
So here we will have

so here as we move away from mean position the kinetic energy will decrease while at the same time potential energy will increase.
So the pair of potential energy and kinetic energy will satisfy the above condition