Answer:
The rock will reach 9 m from the ground at eaxactly 5.06 s after it was initially thrown upwards.
Explanation:
We will use the equations of motion for this.
u = initial velocity of the rock = 22 m/s
g = acceleration due to gravity = -9.8 m/s²
y = vertical position of the rock at a time t = 9 m
y₀ = initial height of the rock = 25 m
t = time it takes for the rock to reach height of 9 m.
(y-y₀) = ut + 0.5gt²
(9 - 25) = 22t + 0.5(-9.8)t²
- 14 = 22t - 4.9t²
4.9t² - 22t - 14 = 0
solving this quadratic equation,
t = 5.055 s or - 0.565 s
Since time cannot be negative,
t = 5.055 s = 5.06 s
Hope this Helps!!!
Answer:54.70 N
Explanation:
Given
Gauge Pressure of
i.e.
Effective area
initial Pressure
Gauge Pressure
Force creates a pressure of which will be equal to Gauge Pressure
<span>The answer is a heterogeneous mixture. Mixtures can be homogeneous and heterogeneous. If a solid and a liquid of a mixture cannot be separated and the difference between them is not visible, it is called homogeneous mixture (or solution). If a solid and a liquid of a mixture are visible and can be separated easily, the mixture is called heterogeneous.</span>
Answer:
Momentum of block B after collision =
Explanation:
Given
Before collision:
Momentum of block A = =
Momentum of block B = =
After collision:
Momentum of block A = =
Applying law of conservation of momentum to find momentum of block B after collision .
Plugging in the given values and simplifying.
Adding 200 to both sides.
∴
Momentum of block B after collision =