Answer:
b. 485 kPa
Explanation:
Gay-Lussac's law express that the pressure of a gas under constant volume is directly proportional to the absolute temperature. The equation is:
P1T2 = P2T1
<em>P is pressure and T absolute temperature of 1, initial state and 2, final state of the gas</em>
<em>Where P1 = 74psi</em>
<em>T2 = 20°C + 273.15 = 293.15K</em>
<em>P2 = ?</em>
<em>T1 = (95°F -32) * 5/9 + 273.15 = 308.15K</em>
<em />
Replacing:
74psi*293.15K = P2*308.15K
70.4psi
In kPa:
70.4psi * (6.895kPa / 1psi) =
<h3>b. 485 kPa
</h3>
Answer:The molecular formula of the oxide of metal be
. The balanced equation for the reaction is given by:

Explanation:
Let the molecular formula of the oxide of metal be 

Mass of metal product = 1.68 g
Moles of metal X =
1 mol of metal oxide produces 2 moles of metal X.
Then 0.03005 moles of metal X will be produced by:
of metal oxide
Mass of 0.01502 mol of metal oxide = 2.40 g (given)

y = 2.999 ≈ 3
The molecular formula of the oxide of metal be
. The balanced equation for the reaction is given by:

Answer:
Covalent bonds usually occur between nonmetals. For example, in water (H2O) each hydrogen (H) and oxygen (O) share a pair of electrons to make a molecule of two hydrogen atoms single bonded to a single oxygen atom. ... Covalent compounds tend to be soft, and have relatively low melting and boiling points.
Answer:
A reaction rate is a measure of how fast a reactant disappears or a product forms during a reaction.
Explanation:
It is usually defined as the change in concentration per unit time:
Δ(concentration)/Δt
The units are (moles per litre) per second.
In symbols, the units are mol/(L·s) or mol·L^-1 s^-1.