It is.
An acid will be strong when its conjugated base is highly stable, and vice-versa.
That can occur for instance through electronic delocalization.
Here are the answers in order:
1. During a physical change the substance changes physically.
2. The law of conservation of mass is a law stating the conservation of mass cannot be higher than 46mg or lower than 32mg.
3. A hypothesis is a guess that you make before completing a science experiment, it can be considered a law because it is important to know why you are making the guess.
4. During a chemical change the mass is changing colors. This is a representation of a chemical change.
5. Oil is a non-renewable resource, so it cannot demonstrate the conservation of mass.
6. When the color of the substance has changed or when it explodes.
7. Reactants are the objects that react when in a chemical change.
8. If you follow the rule of not going higher than 46mg and not lower than 32mg then it will automatically follow this law.
Chemical Reactions Part One Video:
1. mass
2. erupt-ant
3. reactant
4. object
5. mixtures
6. molecules
7. color changed
Questions again:
1. A chemical reaction
2. A physical change
3. Because if it is no higher than 46mg and no lower than 32mg then it will follow on it's own.
How an atom reacts chemically depends on how willing it is to share electrons with others.
It’s electrons
The wavelength of the orange line is 610 nm, the frequency of this emission is 4.92 x 10¹⁴ Hz and the energy of the emitted photon corresponding to this <em>orange line</em> is 3.26 x 10⁻¹⁹ J.
<em>"Your question is not complete, it seems to be missing the diagram of the emission spectrum"</em>
the diagram of the emission spectrum has been added.
<em>From the given</em><em> chart;</em>
The wavelength of the atomic emission corresponding to the orange line is 610 nm = 610 x 10⁻⁹ m
The frequency of this emission is calculated as follows;
c = fλ
where;
- <em>c is the speed of light = 3 x 10⁸ m/s</em>
- <em>f is the frequency of the wave</em>
- <em>λ is the wavelength</em>

The energy of the emitted photon corresponding to the orange line is calculated as follows;
E = hf
where;
- <em>h is Planck's constant = 6.626 x 10⁻³⁴ Js</em>
<em />
E = (6.626 x 10⁻³⁴) x (4.92 x 10¹⁴)
E = 3.26 x 10⁻¹⁹ J.
Thus, the wavelength of the orange line is 610 nm, the frequency of this emission is 4.92 x 10¹⁴ Hz and the energy of the emitted photon corresponding to this <em>orange line</em> is 3.26 x 10⁻¹⁹ J.
Learn more here:brainly.com/question/15962928
Answer:
Denaturation is a process in which proteins or nucleic acids lose the quaternary structure, tertiary structure, and secondary structure which is present in their native state, by application of some
Explanation: