True yes TRUE
Science may also be defined as the study of surroundings
A. Impulse is simply the product of Force and time.
Therefore,
I = F * t --->
1
where I is impulse, F is force, t is time
However another formula for solving impulse is:
I = m vf – m vi --->
2
where m is mass, vf is final velocity and vi is initial
velocity
Therefore using equation 2 to solve for impulse I:
I = 2000kg (0) – 2000kg (77 m/s)
I = -154,000 kg m/s
B. By conservation of momentum, we also know that Impulse
is conserved. That means that increasing the time by a factor of 3 would still
result in an impuse of -154,000 kg m/s. So,
I = F’ * (3 t) = -154,000 kg m/s
Since t is multiplied by 3, therefore this only means
that Force is decreased by a factor of 3 to keep the impulse constant,
therefore:
(F/3) (3t) = -154,000 kg m/s
Summary of Answers:
A. I = -154,000 kg m/s
B. Force is decreased by factor of 3
Answer:
It would because the shape of the rocket is designed to be able to slice through the air as smooth as possible and now you may be thinking that air is already smooth but when you try to push something as large and heavy like a rocket then the shape of the rocket will be very important. The bottom of the rocket is flatter then the top so it is not designed to fly smoothly through the air. So the rocket would fall vertically downward(If it was still in one piece)because of it's shape. It is easier for the top of the rocket to go smoothly through the air then the bottom.
Explanation:
I am 90% sure this is correct but if I'm not please tell me
Answer:
The weight of the body in the new planet is 100 newtons.
Explanation:
From Newton's Law of Gravitation we find that gravitational force is directly proportional to mass of the planet and inversely proportional to the square of its radius. From this fact we can build the following relationship:
(1)
Where:
,
- Gravitational force, measured in newtons.
,
- Mass of planet, measured in kilograms.
,
- Radius of the planet, measured in meters.
If we know that
,
and
, then the expected gravitational force in the new planet is:



The weight of the body in the new planet is 100 newtons.