Answer:
The total distance will be 400 m.
Explanation:
For portion AB:
Acceleration = 2
t= 10 s
Car start from rest , u=0 m/s
We know that


S= 100 m.
For portion BC:
V= u + at
V=0 + 2 x 10
V= 20 m/s
In this portion car moves with constant velocity 20 m/s for 10 s.
So distance S= V x t
S=20 x 10 =200 m.
For portion CD:
The velocity at point C will be 20 m/s
In this portion the final speed of car will be zero because given that at final car come to rest.
So the acceleration will be in the negative direction to stop the car.
We know that


S=100 m
The total distance AD=AB + BC+ CD
AD=100 +200 + 100 m
AD=400 m.
The total distance will be 400 m.
Answer:
Most likely it will reach 29.4 up in the air before coming back down.
Explanation:
The force of the ball will be the same on how high it will go.
If the mass of both of the objects is doubled, then the force of gravity between them is quadrupled; and so on. Since gravitational force is inversely proportional to the square of the separation distance between the two interacting objects, more separation distance will result in weaker gravitational forces.
To develop this problem it is necessary to use the equations of description of the simple harmonic movement in which the acceleration and angular velocity are expressed as a function of the Amplitude.
Our values are given as


The angular velocity of a body can be described as a function of frequency as



PART A) The expression for the maximum angular velocity is given by the amplitude so that



PART B) The maximum acceleration on your part would be given by the expression



Answer:
This is the information I can provide. I hope it helps
Explanation:
Frequency is measured in units of hertz (Hz) which is equal to one occurrence of a repeating event per second. The period is the duration of time of one cycle in a repeating event, so the period is the reciprocal of the frequency.