1). Calculate how long it takes an object to fall 4,000 m after it's dropped. (Use D = (1/2) (g) (T²) . D is 4,000 m. g = 9.8 m/s². Find T .)
2). Calculate how far the object will move HORIZONTALLY in that length of time, if it's moving at 75 m/s. (Distance = (75 m/s) x (time) . )
Answer:
I think its distance
Explanation:
when measuring how far a p.o art u can use mm
The number of heat units needed to raise the temperature of a body by one degree.
Answer:
x = 0.396 m
Explanation:
The best way to solve this problem is to divide it into two parts: one for the clash of the putty with the block and another when the system (putty + block) compresses it is spring
Data the putty has a mass m1 and velocity vo1, the block has a mass m2
. t's start using the moment to find the system speed.
Let's form a system consisting of putty and block; For this system the forces during the crash are internal and the moment is preserved. Let's write the moment before the crash
p₀ = m1 v₀₁
Moment after shock
= (m1 + m2) 
p₀ =
m1 v₀₁ = (m1 + m2) 
= v₀₁ m1 / (m1 + m2)
= 4.4 600 / (600 + 500)
= 2.4 m / s
With this speed the putty + block system compresses the spring, let's use energy conservation for this second part, write the mechanical energy before and after compressing the spring
Before compressing the spring
Em₀ = K = ½ (m1 + m2)
²
After compressing the spring
= Ke = ½ k x²
As there is no rubbing the energy is conserved
Em₀ = 
½ (m1 + m2)
² = = ½ k x²
x =
√ (k / (m1 + m2))
x = 2.4 √ (11/3000)
x = 0.396 m
Answer:
An earthquake is a natural rapid shaking of the tectonic plates caused by the release of stored energy in rocks
Explanation:
there are tectonic plates and the earthquake is caused by that energy the plates are always moving so it might get stuck in between each other and store the energy.