We can use the ideal gas law equation to find the volume of the balloon.
PV = nRT
where
P - pressure - 0.992 atm x 101 325 Pa/atm = 100 514 Pa
V - volume
n - number of moles - 8.80 mol
R - universal gas constant - 8.314 Jmol⁻¹K⁻¹
T - temperature in kelvin - 25 °C + 273 = 298 K
Substituting these values in the equation
100 514 Pa x V = 8.80 mol x 8.314 Jmol⁻¹K⁻¹ x 298 K
V = 217 L
volume of balloon is 217 L
Answer:
9Be
4
Explanation:
Atomic number = (3+2)-1= 4
Mass number = (6+4)-1 =9
<span>1.4 moles of aluminium metal is exposed to 1.35 mol of oxygen
Theoretical yield=0.007 mol
calculate % yield
% yield= actual yield/theoretical yield*100
% yield= 0.938/0.700*100
% yield= 13.4% yield</span>
This problem is providing us with the mass of hydrochloric acid and the volume of solution and asks for the pH of the resulting solution, which turns out to be 1.477.
<h3>pH calculations</h3>
In chemistry, one can calculate the pH of a solution by firstly obtaining its molarity as the division of the moles of solute by the liters of solution, so in this case for HCl we have:

Next, due to the fact that hydrochloric acid is a strong acid, we realize its concentration is nearly the same to the released hydrogen ions to the solution upon ionization. Thereby, the resulting pH is:

Which conserves as much decimals as significant figures in the molarity.
Learn more about pH calculations: brainly.com/question/1195974