The equation of the line which has a gradient of 2 and passes through the point (1,4) is y = 2x + 2.
We have given that,
A line that has a gradient of 2 and passes through the line (1, 4).
We have to determine the equation of the line,
<h3>What is the gradient?</h3>
The gradient also known as the slope is the defined as
Gradient (m) = change in y coordinate / change in x coordinate
The equation of a line passing through a given point is given by the following equation
y – y₁ = m(x – x₁)
How to determine the equation of the line passing through point (1,4)
x coordinate (x₁) = 1
y coordinate (y₁) = 4
Gradient (m) = 2
Equation =
y – y₁ = m(x – x₁)
y – 4 = 2(x – 1)
Clear bracket
y – 4 = 2x – 2
Make y the subject by adding 4 to both sides
y – 4 + 4 = 2x – 2 + 4
y = 2x + 2
The equation of the line which has a gradient of 2 and passes through the point (1,4) is y = 2x + 2.
To learn more about the line visit:
brainly.com/question/5396646
#SPJ1
Bruh how’s it gonna tell me incorrect answer when it was right
Square both sides. (5-2x) - (2-x) = 1^2. 5 - 2x - 2 + x = 1. Simplify to get 3 - x = 1. X=2
Option A:

Solution:
Given data:
Center of the circle is (5, 3).
Radius of the circle = 4
To find the equation of the circle:
The general form of the equation of a circle in centre-radius format is

where (h, k) is the centre of the circle and r is the radius of the circle.
Substitute the given values in the equation of a circle formula:


The equation of the given circle is
.
Hence Option A is the correct answer.
Answer:
Step-by-step explanation:
Assuming the number of tickets sales from Mondays is normally distributed. the formula for normal distribution would be applied. It is expressed as
z = (x - u)/s
Where
x = ticket sales from monday
u = mean amount of ticket
s = standard deviation
From the information given,
u = 500 tickets
s = 50 tickets
We want to find the probability that the mean will be greater than 510. It is expressed as
P(x greater than 510) = 1 - P(x lesser than or equal to 510)
For x = 510
z = (510 - 500)/50 = 0.2
Looking at the normal distribution table, the probability corresponding to the z score is 0.9773
P(x greater than 510) = 1 - 0.9773 = 0.0227