Answer:
o
Explanation:
The athlete ran a total distance of zero because they ran 100m forward then turned around so they went back to their starting position
Explanation:
1. draught
2. Parallax error
3. angle if displacement
4. air resistance or any form of obstruction
<u>We are given:</u>
Mass of Neptune = 1.03 * 10²⁶ kg
Distance from the center of Neptune (r) = 2.27 * 10⁷
now, computing the value of the acceleration due to gravity (g)
<u>Finding g:</u>
We know the formula:
g = G(mass of planet) / (r)²
g = [6.67 * 10⁻¹¹ * 1.03*10²⁶] / (2.27*10⁷) [since G is 6.67*10⁻¹¹]
g = (6.87 * 10¹⁵) / (5.15 * 10¹⁴)
which can be rewritten as:
g = (6.87 * 10¹⁵ * 10⁻¹⁴) / 5.15
g = (6.87 * 10¹⁵⁻¹⁴) / 5.15
g = (6.87/5.15) * 10
g = 1.34 * 10
g = 13.4 m/s² <em>(approx)</em>
Answer:

east of south
Explanation:
Given:
- distance of the person form the initial position,

- direction of the person from the initial position,
north of east
- distance supposed to travel form the initial position,

- direction supposed to travel from the initial position, due North
<u>Now refer the schematic for visualization of situation:</u>

...............(1)

.................(2)
<u>Now the direction of the desired position with respect to south:</u>


east of south
<u>Now the distance from the current position to the desired position:</u>



Answer: D.) 39,200 J
Via the equation of potential energy PE = mgh where m is mass, g is the average gravity on earth and h is the height. In this case m = 400 kg, g = 9.8, h = 10 m thus:

P.E.= 39,200 Joules