Answer:
M2 = 278.06 kg
Explanation:
We calculate the weight of M1
W=m*g
Where
m: mass (kg)
g: acceleration due to gravity (m/s²)
W₁=288* 9.8= 2822.4 N
Look at the attached graphic
We calculate the x-y components of the weight :
W₁x= 2822.4*sin41° N =1851.66 N
W₁y= 2822.4 *cos41° N = 2130.09 N
We apply Newton's first law for the balance in M1:
Σ Fy=0
Fn-W₁y=0 , Fn: normal force
Fn=W₁y=2130.09N
Friction Force = Ff=μs *Fn = 0.41*2130.09 =873.34 N
Σ Fx=0
T- W₁x- Ff=0
T= 1851.66 + 873.34
T= 1851.66 + 873.34
T=2725 N
We apply Newton's first law for the balance in M2:
Σ Fy=0
T- W₂ =0
W₂ = T = 2725 N
W₂ = M2*g
M2 = W₂/g
M2 = 2725/9.8
M2 = 278.06 kg
The change in momentum of an object equals the impulse applied to it
Answer:
1.1 Two poles: North and South Poles.
1.2 - Staple pin - Nail - Tip of my phone charger - Metal keys - Cloth Hanger
1.3 - Wooden bed cot - Plastic pen - Game pad - Wooden shelf - Paper - A T-shirt
1.4 Yes
1.5 No
Answer:
The resulting speed of the airplane is 150 Km/h
Explanation:
The airspeed of the plane is 120 Km/h due North. The wind came from West pointing to the East at 90 Km/h
Both speeds are acting in different directions, so they must be added as vectors. Both vectors and the resulting velocity (Vr) are shown in the image below
The magnitude of that velocity can be computed by using Pythagoras's theorem:



The resulting speed of the airplane is 150 Km/h
A. The number of protons is the same as the number as electrons, when its just a neutral atom