Answer:
a) solar activity -- sudden eruptions of large bubbles of plasma and magnetic energy
and
d) solar flare -- sudden release of magnetic energy
Explanation:
We can start by eliminating the options that are definitely wrong.
A coronal mass ejection is not a relatively cool spot on surface of the sun, in fact such a spot is a sunspot, while a coronal mass ejection occurs when the magnetic field of the sun emerges as a loop. Thus, both options B and E are incorrect, leaving only A, C, and D. Option C makes no sense, as the sun's gravitational field does not 'churn'. Thus, only options A and D are left. A closer look at A and D reveals they are correct; solar flares are in fact sudden releases of magnetic energy, as seen in this quote from UC Berkeley's website; "Solar flares are caused by sudden changes of strong magnetic fields in the Sun's corona.". And solar activity is a blanket term for the effects of eruptions of plasma and magnetic energy from the sun.
Answer:
Mass = 386 kg
Explanation:
<u><em>Density = Mass / Volume</em></u>
Mass = Density × Volume
Where D = 19300 kg/m³ , V = 0.02 m³
<em>Putting the given in the above formula</em>
Mass = 19300 × 0.02
Mass = 386 kg
Answer:
Part a)

Part b)

Explanation:
Part a)
For force conditions of two blocks we will have


now from above equations we have


now we know that


now from above equation we have


Part b)
When heavier block is removed and F = 908 N is applied at the end of the string then we have



The light bulb would glow brighter.
<h3>What is Resistance?</h3>
a force that works against a body's direction of motion and seeks to stop or slow down motion, such as friction. a measure of how much a material prevents an electric current from flowing as a result of a voltage.
What is the law of resistance?
Resistance and Ohm's Law. According to Ohm's law, the resistance of the circuit and the current or energy travelling through the resistance are both exactly proportional to the voltage or potential difference between two places.
The current would grow since it is exactly proportionate to the voltage, increasing the light bulb's brilliance, or simply making it brighter.
to learn more about Resistance go to - brainly.com/question/15728236
#SPJ4
There are three forces acting on the book.
1. Force due to gravity
2. Force exerted downward by the hamster
3. Normal Force in reaction to the downward forces
Since the book is not moving, the net force is zero. The summation of all forces must be zero. Then we could find the normal force which is unknown (denoted as x).
∑F = -(4 kg)(9.81 m/s2) - 3 N + x =0
∑F = -39.24 N - 3N + x =0
x = 42 N
Therefore, the normal force is 42 N.