1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
butalik [34]
2 years ago
8

What are some examples of non-inertial reference frames?

Physics
1 answer:
Nataly_w [17]2 years ago
5 0

Answer:

Examples of non-inertial reference frames

One clearcut example of an inertial reference frame is an isolated spaceship, far, far away from the Earth, the Sun, the Milky Way Galaxy, and all other massive objects. Fred places a blue ball into a claw at the left end of the ship, and red ball into a claw at the right end of the ship.

Explanation:

Let us say that you are in a car at a stop light. The car is standing still. The light turns green, and the car accelerates forward. While undergoing this acceleration, the car is a non-inertial frame of reference.

You might be interested in
A 0.500-kg glider, attached to the end of an ideal spring with force constant undergoes shm with an amplitude of 0.040 m. comput
Nikitich [7]
There is a missing data in the text of the problem (found on internet):
"with force constant<span> k=</span>450N/<span>m"

a) the maximum speed of the glider

The total mechanical energy of the mass-spring system is constant, and it is given by the sum of the potential and kinetic energy:
</span>E=U+K=  \frac{1}{2}kx^2 + \frac{1}{2} mv^2
<span>where
k is the spring constant
x is the displacement of the glider with respect to the spring equilibrium position
m is the glider mass
v is the speed of the glider at position x

When the glider crosses the equilibrium position, x=0 and the potential energy is zero, so the mechanical energy is just kinetic energy and the speed of the glider is maximum:
</span>E=K_{max} =  \frac{1}{2}mv_{max}^2
<span>Vice-versa, when the glider is at maximum displacement (x=A, where A is the amplitude of the motion), its speed is zero (v=0), therefore the kinetic energy is zero and the mechanical energy is just potential energy:
</span>E=U_{max}= \frac{1}{2}k A^2
<span>
Since the mechanical energy must be conserved, we can write
</span>\frac{1}{2}mv_{max}^2 =  \frac{1}{2}kA^2
<span>from which we find the maximum speed
</span>v_{max}= \sqrt{ \frac{kA^2}{m} }= \sqrt{ \frac{(450 N/m)(0.040 m)^2}{0.500 kg} }=  1.2 m/s
<span>
b) </span><span> the </span>speed<span> of the </span>glider<span> when it is at x= -0.015</span><span>m

We can still use the conservation of energy to solve this part. 
The total mechanical energy is:
</span>E=K_{max}=  \frac{1}{2}mv_{max}^2= 0.36 J
<span>
At x=-0.015 m, there are both potential and kinetic energy. The potential energy is
</span>U= \frac{1}{2}kx^2 =  \frac{1}{2}(450 N/m)(-0.015 m)^2=0.05 J
<span>And since 
</span>E=U+K
<span>we find the kinetic energy when the glider is at this position:
</span>K=E-U=0.36 J - 0.05 J = 0.31 J
<span>And then we can find the corresponding velocity:
</span>K= \frac{1}{2}mv^2
v=  \sqrt{ \frac{2K}{m} }= \sqrt{ \frac{2 \cdot 0.31 J}{0.500 kg} }=1.11 m/s
<span>
c) </span><span>the magnitude of the maximum acceleration of the glider;
</span>
For a simple harmonic motion, the magnitude of the maximum acceleration is given by
a_{max} = \omega^2 A
where \omega= \sqrt{ \frac{k}{m} } is the angular frequency, and A is the amplitude.
The angular frequency is:
\omega =  \sqrt{ \frac{450 N/m}{0.500 kg} }=30 rad/s
and so the maximum acceleration is
a_{max} = \omega^2 A = (30 rad/s)^2 (0.040 m) =36 m/s^2

d) <span>the </span>acceleration<span> of the </span>glider<span> at x= -0.015</span><span>m

For a simple harmonic motion, the acceleration is given by
</span>a(t)=\omega^2 x(t)
<span>where x(t) is the position of the mass-spring system. If we substitute x(t)=-0.015 m, we find 
</span>a=(30 rad/s)^2 (-0.015 m)=-13.5 m/s^2
<span>
e) </span><span>the total mechanical energy of the glider at any point in its motion. </span><span>

we have already calculated it at point b), and it is given by
</span>E=K_{max}= \frac{1}{2}mv_{max}^2= 0.36 J
8 0
3 years ago
How can a 1kg ball have more kinetic energy than a 100kg ball? Explain both using words and by providing a numerical example
MariettaO [177]

1 kg ball can have more kinetic energy than a 100 kg ball as increase in velocity is having greater impact on K.E than increase in mass.

<u>Explanation</u>:

We know kinetic energy can be judged or calculated by two parameters only which is mass and velocity. As kinetic energy is directly proportional to the (velocity)^2 and increase in velocity leads to greater effect on translational Kinetic Energy. Here formula of Kinetic Energy suggests that doubling the mass will double its K.E but doubling velocity will quadruple its velocity:

\text { Kinetic Energy }=\frac{1}{2} m v^{2}

Better understood from numerical example as given:

If a man A having weight 50 kg run with speed 5 m/s and another man B having 100 kg weight run with 2.5 m / s. Which man will have more K.E?

This can be solved as follows:

\text { Kinetic Energy of } \mathrm{A}=\frac{1}{2} 50 \times 5^{2}=625 \mathrm{J}

\text { Kinetic Energy bf } \mathrm{B}=\frac{1}{2} 100 \times 2.5^{2}=312.5 \mathrm{J}

It shows that man A will have more K.E.

Hence 1 kg ball can have more K.E than 100 kg ball by doubling velocity.

4 0
3 years ago
Question 8
FinnZ [79.3K]

Answer:

A hope this helps

Explanation:

8 0
3 years ago
Do you think a hurricane can be considered to be a heat machine? Why?
Leona [35]

Answer:

No

Explanation:

Hurricanes always do not bring heat. For example, Hurricane Sandy brought snow.

5 0
3 years ago
Read 2 more answers
Which of the following describes sound waves?
lianna [129]
The answer is c) electromagnetic sawed in which the vibrations are perpendicular to the motion of the sound
8 0
3 years ago
Read 2 more answers
Other questions:
  • What is the maximum number of lines per centimeter a diffraction grating can have and produce a complete first-order spectrum fo
    10·1 answer
  • HELP PLEASE!!!!! (Apex)
    11·2 answers
  • All of the following are stages of change EXCEPT
    13·1 answer
  • AM radio signals use amplitude modulation of the radio waves to transmit a signal. A typical wavelength of an AM radio wave is 3
    7·1 answer
  • You have two photos of a person walking. One shows the person at the corner of Third and Main streets, the other shows the perso
    10·1 answer
  • PLZ help 10 points!!! space question!
    7·1 answer
  • A 90-kg skydiver jumps from a height of 6000 m above the ground, falling head-first (pike position). The area of the diver is 0.
    6·1 answer
  • All objects are either ___________ or ___________. Charged objects can have a ____________ or _____________ charge. Uncharged ob
    5·1 answer
  • Part A
    14·1 answer
  • A restaurant records the number of tables served each night, and the results have the values: minimum = 3, lower quartile = 14,
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!