Answer:
The neutrinos are produced in the core of the sun by nuclear fusion and measuring their number helps us confirm that there are enough proton-proton chain reactions of each which produce a neutrino and going on in the Sun's core to explain the energy output of the Sun.
These are two questions and two answers.
Part 1. Fin the value of the ration of velocity C to velocity D.
Answer: 2
Explanation:
1) Formula: momentum = mass * velocity
2) momentum C = mass C * velocity C
3) momentum D = mass D * velocity D.
4) C and D have the same momentum =>
mass C * velocity C = mass D * velocity D
5) mass C = (1/2) mass D => mass C / mass C = 1/2
6) use in the equation stated in the point 4)
velocit C / velocity D = mass D / mass C
using the equation stated in point 5:
mass D / mass C = 1 / [ mass C / mass D] = 1 / [1/2] = 2
=>
7) velocity C / velocity D = mass D / mass C = 2
Part 2: <span>ratio of kinetic energy C to kinetic energy D.
</span>
Answer: 2
Explanation:
1) formula: kinetic energy KE = (1/2) mass * (velocity)^2
2) KE C = (1/2) mass C * (velocity C)^2
3) KE D = (1/2) mass D * (velocity D)^2
4) KE C / KE D =
(1/2) mass C * (velocity C)^2 mass C (velocity C)^2
--------------------------------------- = --------------- * ---------------------- = (1/2) * (2)^2
(1/2) mass D *( velocity D)^2 mass D v(velocity D)^2
= 4 / 2 = 2
The average current density is 7.6 × 10⁵ A/m².
To calculate the current density current will be 2.4 A.
Diameter of a wire = 2mm.
The cross-sectional area of the wire is given by r = d/2
where r is the radius of the wire.
Then, the cross-sectional area is = 0.00000314159265
= 3.1 × 10⁻⁶ m².
<h3>
What is average current density?</h3>
Consider a current carrying conductor, the current density depends upon the current flow in the conductor. If the current flow in the conductor will be high then the current density will also be high. Using the average current flowing through the conductor, the average current density will be found.
Average current density j = I / A Ampere/ meter².
By substituting the values in the formula,
j = 2.4 / ( 3.1 × 10⁻⁶)
= 7.6 × 10⁵ A/m².
Hence, the current density can be calculated.
Learn more about average current density,
brainly.com/question/3981451
#SPJ4
Answer:
There is a general trend of decreasing abundance with increasing atomic number, but elements with even atomic numbers tend to be more abundant than those with odd atomic numbers.
Explanation: